Среди 29 известных спутников Урана особое место занимает 1200-километровый Ариэль — четвертый по размеру и, вероятно, самый геологически активный в прошлом. Эта луна, открытая британским астрономом Уильямом Ласселом 24 октября 1851 года, продолжает хранить массу тайн, которые будут оставаться неразгаданными еще довольно долго.
Лучший на сегодняшний день цветной снимок Ариэля был получен космическим аппаратом NASA "Вояджер-2" 24 января 1986 года.
Съемка велась с расстояния 170 000 километров, а разрешение составило около трех километров на пиксель.
Южное полушарие Ариэля — мозаика из трех типов местности: древние кратерированные равнины, изрезанный разломами рельеф и загадочные гладкие области. Эти особенности прекрасно видны на улучшенном изображении.
Большая часть видимой поверхности представлена древней корой, усыпанной бесчисленным множеством ударных образований, уступами и грабенами — вытянутыми участками, опущенными относительно окружающей территории.
Особый интерес вызывают крупные долины у терминатора (границы света и тени), покрытые более молодыми отложениями с меньшим количеством кратеров. Это косвенное свидетельство того, что спутник весьма долго оставался геологически активным после формирования.
Вероятно, геологическую активность столь малому небесному телу обеспечили приливные силы: постоянное растяжение и сжатие Ариэля в процессе гравитационного взаимодействия с Ураном и другими массивными спутниками, поддерживало тепло недр продолжительное время.
И снова океан?
В октябре 2025 года ученые из Планетологического института (США) опубликовали исследование, согласно которому под ледяной корой Ариэля может скрываться глобальный океан глубиной более 170 километров. Для сравнения: средняя глубина Тихого океана составляет всего четыре километра.
Еще раньше, в июле 2024 года, космический телескоп NASA "Джеймс Уэбб" обнаружил на поверхности Ариэля одни из самых богатых залежей углекислого газа в Солнечной системе, а также угарный газ. Вдали от Солнца, без атмосферы и магнитосферы эти соединения должны быстро разрушаться под воздействием космических лучей. Но они есть! Следовательно, существует механизм, обеспечивающий постоянное пополнение этих залежей. Скорее всего, ответственен за это подповерхностный океан, который находит выход наружу через криовулканы.
В феврале 2025 года исследователи из Лаборатории прикладной физики имени Джонса Хопкинса (США) предположили, что глубокие борозды на поверхности Ариэля могут быть "окнами" в недра спутника, подобно разломам на южном полюсе сатурнианского Энцелада.
Система Урана настолько удивительна, что научное сообщество настаивает на отправке специальной миссии по изучению как самой планеты, так и ее крупных спутников, включая Ариэль. И уже существует концепция такой миссии, получившей название Uranus Orbiter and Probe. Ее запуск намечен на вторую половину 2030-х годов с прибытием в систему ледяного гиганта в 2044 году.
Оно представляет собой гигантскую галактическую семью, насчитывающую более 2 000 членов, связанных между собой гравитацией. Простирается скопление примерно на 200 миллионов световых лет. Для сравнения: диаметр Млечного Пути составляет "всего" 100 000 световых лет.
В этой статье мы рассмотрим беспрецедентно детальные изображения южной части скопления, которые были получены 5 июня 2025 года наземной обсерваторией имени Веры Рубин, находящейся на пике Эль-Пеньон горы Серро-Пачон (высота 2 682 метра) в северной части Чили.
Что мы видим на снимках
На изображениях южной части скопления запечатлены галактики самых разных форм и размеров. Массивные эллиптические галактики с желтоватым свечением старых звезд соседствуют со спиральными, где продолжается активное звездообразование. Между ними рассыпаны сотни небольших галактик — карликовых спутников гигантов.
Крупные галактики, как показывают наблюдения с помощью космических и наземных телескопов, содержат шаровые скопления — древние плотные объединения звезд возрастом более 10 миллиардов лет. Аналогичные образования есть и в Млечном Пути, что подтверждает универсальность механизма формирования и развития галактик.
Возраст наиболее древних галактик скопления достигает 13 миллиардов лет — они зародились в очень юной Вселенной, когда она еще была совершенно другим местом.
Скопление Девы — это не статичная картинка, а очень динамичная система. Галактики здесь движутся со скоростями до 1 000 километров в секунду, постоянно взаимодействуя. Некоторые галактики мчатся навстречу друг другу и в будущем столкнутся с последующим слиянием, которое породит более массивную галактику. Другие уже имеют "шрамы" прошлых столкновений — искривленные рукава, вытянутые приливные хвосты из звезд и газа.
Гравитация скопления настолько сильна, что удерживает не только галактики, но и огромное количество межгалактического газа, раскаленного до миллионов градусов. Примечательно, что этот газ, светящийся в рентгеновском диапазоне, содержит больше массы, чем все звезды скопления вместе взятые.
Благодаря этим возможностям ученые получают изображения, на которых видны не только яркие галактики, но и слабые структуры — звездные потоки, остатки разрушенных карликовых галактик, далекие фоновые объекты. Каждый снимок содержит столько информации, что его изучение может занять годы!
Эти глубокие снимки в общей сложности охватывают около 10 миллионов галактик (включая фоновые) — и это составляет примерно 0,05% от тех 20 миллиардов галактик, которые обсерватория Рубин запечатлеет за следующее десятилетие.
Комета 67P/Чурюмова — Герасименко (далее Чурюмова — Герасименко) — одно из самых детально изученных небесных тел в Солнечной системе. Этот космический скиталец, состоящий из двух фрагментов*, по форме напоминает гигантскую резиновую уточку.
*Размеры кометы: 4,1 км × 3,3 км × 1,8 км (большая часть); 2,6 км × 2,3 км × 1,8 км (меньшая часть).
2 марта 2004 года к комете был запущен зонд Европейского космического агентства (ESA) "Розетта", который в мае 2014 года достиг своей цели, став ее временным искусственным спутником.
К концу сентября 2016 года комета начала удаляться от Солнца, и космический аппарат получал все меньше энергии от солнечных панелей. Перед учеными встал выбор: перевести аппарат в "спящий режим" до следующего сближения с Солнцем или получить максимум научных данных. Так как не было гарантий, что зонд сможет пережить чрезмерное охлаждение, ESA выбрало второй вариант — контролируемое столкновение с кометой. 30 сентября 2016 года зонд "Розетта" начал свое четырнадцатичасовое падение к поверхности. Зонд был направлен прямо в район активных "колодцев" — местных гейзеров кометы. До последней секунды аппарат передавал на Землю бесценные данные анализа газовых потоков. Со скоростью всего 3 километра в час — медленнее пешехода — аппарат мягко коснулся поверхностью кометы, навсегда став ее частью.
Я предлагаю вашему вниманию десять детализированных снимков особенностей кометы Чурюмова — Герасименко, полученных навигационной камерой аппарата "Розетта" в моменты максимального сближения с этим удивительным объектом.
Природные космические "двигатели"
В кадр, полученный с расстояния 7,7 километра, попала одна из многочисленных ям на поверхности кометы. Ученые предполагают, что углубления такого рода работают как "двигатели" небесного тела.
Именно отсюда, преодолевая пористые недра кометы, газ вырывается наружу и уносит с собой пыльные частицы кометного материала. Этот процесс обеспечивает характерную кометную активность, которую можно наблюдать по мере ее приближения к Солнцу.
Изображение охватывает область площадью 866 на 866 метров.
Космические столовые горы
Этот впечатляющий вид вдоль горизонта демонстрирует несколько плосковершинных образований, возвышающихся над неровной поверхностью. Стены этих гор испещрены многочисленными трещинами и глубокими разломами, а у их подножия лежат обломки, которые, скорее всего, когда-то скатились со скал и раскрошились под воздействием эрозионных сил.
Изображение, полученное с расстояния 7,8 километра от поверхности, охватывает область площадью 859 на 859 метров.
Валун Хеопс
В левом верхнем углу фотографии возвышается валун Хеопс — самый большой и яркий из всех валунов в этом регионе. Этот сплюснутый эллипсоид впечатляет своими размерами: 45 метров в ширину и 25 метров в высоту.
Хеопс и окружающие его валуны, выступающие из-под гладкой, пыльной поверхности, напомнили ученым знаменитые пирамиды в Гизе, поэтому он был назван в честь Великой пирамиды фараона Хеопса.
Изображение, полученное с расстояния 7,8 километра от поверхности, охватывает область площадью 854 на 854 метра.
Кометные скалы
Этот снимок охватывает меньшую долю кометы и более ровный рельеф области "шеи". На заднем плане величественно возвышаются скалы большей доли кометы, что добавляет особой эффектности изображению.
Изображение, полученное с расстояния 7,8 километра от поверхности, охватывает область площадью 855 на 855 метров.
Страницы каменной летописи
На этом снимке большой доли кометы Чурюмова — Герасименко особое внимание привлекают ряды длинных параллельных бороздок и гребней в центре кадра — наложенные друг на друга природные образования способны поведать историю протяженностью в миллиарды лет.
Если бы человечество организовало миссию по сбору образцов из этой области с их последующей доставкой на Землю, то у нас появилась бы возможность узнать много нового о первых "днях" существования Солнечной системы.
Изображение, полученное с расстояния 8,8 километра от поверхности, охватывает область площадью 855 на 855 метров.
Плато со «свежими ранами»
На этом снимке выделяется специфическая плоская структура, расположенная на возвышенном плато большей доли кометы. У основания этого образования виднеются участки с более светлым материалом — возможно, это "свежие раны" Чурюмова — Герасименко, обнажившиеся в результате эрозии или столкновения с небольшим небесным телом.
Изображение, полученное с расстояния 7,8 километра от поверхности, охватывает область площадью 854 на 854 метров.
Впадины, заполненные щебнем
Этот снимок показывает вид от меньшей доли кометы (на переднем плане в левом нижнем углу) к большей, которая занимает основную часть кадра. Здесь преобладают углубления, заполненные обломками.
Считается, что эти округлые впадины могут быть связаны с источниками активности кометы, возможно, с выходами газа из пористых недр.
Изображение, полученное с расстояния 7,7 километра от поверхности, охватывает область площадью 847 на 847 метров.
Скалистый выступ и дыхание кометы
На этой фотографии представлен вид на тело большой доли кометы. Широкий приподнятый участок на горизонте резко контрастирует с окружающим пейзажем. По обеим сторонам внутренней части "стены" было выявлено присутствие более яркого материала, происхождение которого может быть связано с недавней активностью кометы.
И, действительно, если присмотреться, то на заднем плане виден слабый поток газа и пыли — свидетельство того, что комета "дышит" и остается активной.
Изображение, полученное с расстояния 7,8 километра от поверхности, охватывает область площадью 857 на 857 метров.
Гравитационная головоломка
Относительно небольшие валуны, попавшие в кадр, словно бросают вызов гравитации, цепляясь за крутые склоны большей доли кометы. Не менее интригующая деталь находится справа, где слои породы выглядят сжатыми — возможно, это след древней космической катастрофы.
Одна из теорий предполагает, что комета образовалась в результате мягкого столкновения двух меньших тел, что объясняет ее необычные форму.
Изображение, полученное с расстояния 7,8 километра от поверхности, охватывает область площадью 857 на 857 метров.
"Шея" кометы
На заключительном снимке продемонстрирована усеянная валунами область "шеи" кометы — соединение между двумя долями. Меньшая доля расположена слева, большая — справа. Именно шея является источником наибольшей активности кометы Чурюмова — Герасименко.
На фотографии виден четкий контраст между грубым материалом скальных стен и мягким, более «текстурированным» материалом, похожим на пыль и песок. В левом нижнем углу кадра видны валуны, которые визуально малы, но отдельные экземпляры выше 10 метров.
Изображение, полученное с расстояния 7,7 километра от поверхности, охватывает область площадью 844 на 844 метра.
Готовясь к этой статье, я задал сотне случайных людей, казалось бы, простой вопрос: "Кто доказал, что Земля круглая?" Большинство уверенно отвечали: Колумб или Магеллан. Некоторые, особенно моложе тридцати, вспоминали школьные рассказы о смелом мореплавателе Христофоре Колумбе, который будто бы бросил вызов невежественным современникам и всему мрачному Средневековью, отплыв за горизонт и доказав, что Земля — не плоский диск.
Конечно, встречались и те, кто заявлял, что "никто не знает, какая она на самом деле", потому что "небесная твердь", "космоса не существует" и вообще "нам не говорят всю правду, потому что мы — люди маленькие".
После всех этих ответов я окончательно убедился, что выбрал правильную тему.
Я представляю вашему вниманию увлекательную историю о том, как античные мыслители, за две тысячи лет до Колумба, узнали, что Земля имеет форму шара. Более того, они даже смогли вычислить ее размер с поразительной для своего времени точностью. И все это без телескопов и спутников!
Это история о триумфе человеческого гения.
Откуда взялась легенда о "плоском Средневековье"
Представление о том, что до великих географических открытий люди считали Землю плоской, появилось не в Средние века, а гораздо позже. Главным популяризатором этого мифа стал "отец американской литературы" Вашингтон Ирвинг. В 1828 году он опубликовал мифологизированную биографию Колумба, в которой красочно описал, как невежественные современники, подначиваемые священниками, высмеивали идею шарообразной Земли, а храбрый мореплаватель героически им противостоял.
Я не случайно назвал эту работу Ирвинга, получившую название "История жизни и путешествий Христофора Колумба", мифологизированной. Перед нами не глубокое историческое исследование, а художественное произведение. Он придумал драматический конфликт, которому нет никакого подтверждения. На самом деле у образованных европейцев XV века не было никаких сомнений, что они живут на шаре. И интеллектуальная элита спорила с Колумбом о размерах этого шара и о практической осуществимости экспедиции.
Древние греки знали все за две тысячи лет до Колумба
История понимания формы Земли уходит корнями в глубокую древность. Первые мыслители действительно представляли планету плоской. Например, Фалес Милетский в VI веке до н. э. считал, что Земля — плоский диск, плавающий в бесконечном океане. Анаксимандр и вовсе представлял ее цилиндром*, на верхнем торце которого живут люди.
*Почему именно цилиндром? Полагаю, это связано с объединением двух идей: плоский мир людей и огромное, неизведанное и многоуровневое подземное царство Аида.
Но уже Пифагор, живший примерно в 570–490 годах до н. э., предположил, что Земля имеет форму шара. Эта идея была основана на том, что древние греки считали сферу совершенной геометрической фигурой — достойной столь важного космического тела как Земля (антропоцентризм во все времена зашкаливал). Примечательно, что это была скорее философская концепция, чем научный вывод. Тем не менее Пифагор оказался прав.
Настоящий прорыв совершил Аристотель в IV веке до н. э. Он не просто рассуждал о шарообразности Земли — он был первым, кто предоставил убедительные доказательства, которые остаются актуальными и сегодня.
Первый аргумент касался лунных затмений. Аристотель заметил, что тень Земли, падающая на Луну, всегда имеет форму дуги — независимо от того, под каким углом происходит затмение. Единственное тело, способное отбрасывать такую тень при любом положении источника света, — это шар.
Второе доказательство философ получил, наблюдая за кораблями. Когда судно уходит в море, то сначала за горизонтом скрывается корпус, затем паруса, и лишь потом исчезает верхушка мачты. Если бы Земля была плоской, то корабль бы просто становился все меньше и меньше.
Третий аргумент, который Аристотель приводит в трактате "О небе" (около 350 года до н. э.), связан со звездами. Если путешествовать на север или на юг, то можно заметить, как одни созвездия постепенно скрываются за горизонтом, а другие — наоборот, появляются. Те, что в Египте поднимаются высоко над головой, в северных странах едва видны у линии горизонта. Такое различие возможно только в том случае, если поверхность Земли искривлена.
Человек, измеривший планету палкой
Одним из главных героев этой истории является Эратосфен Киренский — древнегреческий ученый, который в 240 году до н. э. не просто подтвердил выводы Аристотеля о шарообразности Земли, но и измерил ее окружность. И сделал он это с поразительной точностью, используя лишь логику, знание геометрии и... обычную палку.
Эратосфен заведовал знаменитой Александрийской библиотекой и имел доступ к знаниям со всего античного мира. Из старинного свитка он узнал любопытный факт: в городе Сиена (нынешний Асуан) в полдень летнего солнцестояния светило занимает положение точно в зените. В этот момент тени от предметов становятся пренебрежимо малы, а солнечные лучи проникают прямо на дно глубоких колодцев. Это явление, описанное неизвестным автором, натолкнуло Эратосфена на идею измерить размеры Земли.
В тот же день ученый провел эксперимент в Александрии. Он вбил в землю вертикальный шест и заметил, что в полдень тот отбрасывает короткую тень. Измерив длину этой тени и зная высоту шеста, Эратосфен вычислил угол падения солнечных лучей — чуть больше семи градусов, что соответствует примерно одной пятидесятой окружности.
Дальше в ход пошла простая геометрия. В Сиене в полдень солнцестояния Солнце занимало положение точно над головой и не давало тени, а в Александрии в тот же момент шест отбрасывал короткую тень. Разница в наклоне солнечных лучей между двумя городами составила около семи градусов — то есть одну пятидесятую полного круга. Значит, и расстояние между Александрией и Сиеной соответствует одной пятидесятой длины земного меридиана.
По одной версии, Эратосфен поручил измерить этот путь человеку, прошедшему его пешком и считавшему шаги. По другой — использовал данные караванной торговли. Получилось около 5 000 стадиев.
Умножив 5 000 на 50, ученый получил 250 000 стадиев — примерно 40 000 километров. Сегодня мы знаем, что длина экваториальной окружности Земли составляет 40 075 километров. То есть погрешность вычислений Эратосфена составила меньше одного процента. И все это за 2 197 лет до запуска первого искусственного спутника Земли.
Что на самом деле знали в Средние века
Вопреки популярному мифу, средневековые ученые не утратили знания, унаследованные от античных коллег, и не начали считать Землю плоской. Этот миф появился в эпоху Возрождения, когда власть имущие старались во что бы то ни стало противопоставить "мрачное Средневековье" "просвещенной науке" (а в XIX веке Ирвинг раздул этот миф, о чем сказано выше). На деле же образованные люди средневековой Европы и исламского мира прекрасно знали, что Земля имеет форму шара.
Более того, еще во II веке до н. э. греческий ученый Кратет Малльский создал первый в истории глобус. Средневековые картографы, опираясь на достижение своего предшественника, тоже изготавливали сферические модели Земли. То есть без принятия шарообразной формы планеты это было бы совершенно лишено смысла.
Важно отметить, что церковь не только не преследовала ученых за идею шарообразной Земли, но и принимала ее как факт. Например, святой Амвросий Медиоланский — епископ, проповедник и один из отцов западной церкви — уже в IV веке открыто рассуждал о «земном шаре». А мусульманские астрономы того времени развивали сферическую тригонометрию, чтобы вычислять направления и расстояния до Мекки — расчеты, которые имеют смысл только на шарообразной планете.
Роль Колумба в этой истории
Христофор Колумб не доказывал, что Земля круглая. Это давно было известно всем, кто имел хоть какое-то отношение к его экспедиции. Спор шел о другом — о размерах планеты.
Колумб считал Землю на 25-30% меньше, чем она есть на самом деле. Он опирался на данные древнегреческого философа и географа Посидония (135–51 годы до н. э.), который, отвергнув более точные вычисления Эратосфена, занизил оценку длины земной окружности. Согласно расчетам Колумба, путь в Азию по западному маршруту должен был занять всего несколько недель. Ему возражали не невежды, а лучшие географы Европы, справедливо указывавшие, что океан слишком велик и подобное путешествие может закончиться катастрофой.
По иронии судьбы именно ошибка Колумба сделала его путешествие возможным. Если бы он знал истинные размеры Земли и реальные расстояния до Азии, то, вероятно, не решился бы на столь рискованную экспедицию — запасов воды и еды просто не хватило бы на такой путь. Его флот спасло существование неизвестного** тогда континента — Америка оказалась между Европой и Азией, не дав кораблям сгинуть в бескрайнем океане.
**Справедливости ради стоит отметить, что за пять веков до Колумба берегов Северной Америки, вероятно, достигали викинги, но свои открытия они не удосужились задокументировать, так что вскоре это достижение было забыто.
Парадокс XXI века
И вот здесь история делает неожиданный поворот. В наше время, когда существуют тысячи спутниковых снимков Земли, Международная космическая станция непрерывно летает уже 25 лет, и сотни человек побывали в космосе, миллионы наших современников начали верить в плоскую Землю.
Согласно социологическим опросам, примерно 2-3% населения развитых стран убеждены, что планета имеет форму диска. Это не шутка. Существуют целые сообщества, конференции, каналы в интернете, посвященные "разоблачению" шарообразной Земли.
Особенно настораживает возрастная динамика. Среди людей старшего поколения в шарообразности Земли убеждены более девяноста процентов. Среди молодежи этот показатель заметно ниже. Интернет, который должен был стать инструментом распространения знаний, превратился в рассадник невежества.
Древние греки, не имея ни спутников, ни телескопов сумели понять форму планеты и измерить ее размер с помощью палки и тени. Аристотель в IV веке до н. э. привел доказательства, которые может проверить любой человек — достаточно понаблюдать за кораблями или за лунным затмением.
А часть наших современников, имея свободный и мгновенный доступ ко всем знаниям человечества, умудряется отрицать очевидное. Это не "альтернативная точка зрения" и не "здоровый скептицизм". Это интеллектуальная деградация — откат на тысячелетия назад.
То, что кажется обыденным невооруженному глазу, под микроскопом превращается в фантастические пейзажи и причудливые структуры. Если бы не научно-технический прогресс, то мы бы никогда не познакомились с этими микромирами, где царят свои законы красоты, и где каждый элемент способен поведать захватывающую историю эволюции и функционального совершенствования.
Представляю вашему вниманию подборку из десяти потрясающих микрофотографий, которые открывают дверь в удивительную вселенную малого и непознанного.
Структуры кератина в клетках кожи
Это изображение демонстрирует сложную архитектуру белковых волокон кератина внутри клеток человеческой кожи. Кератин — основной структурный белок, играющий ведущую роль в поддержании прочности, эластичности и здоровья кожи, волос и ногтей.
Кератиносодержащие клетки (кератиноциты) используются в медицинских исследованиях для изучения процессов старения и разработки новых методов борьбы с ним.
Семенная головка цветка крестовника
Изящная структура соцветия крестовника, заполненная крошечными семенами. У каждого семечка есть пушистый хохолок, который в будущем поможет ему отправиться в воздушное путешествие и, если повезет, попасть в благоприятные условия для прорастания и воспроизводства собственного потомства.
Это прекрасный пример того, насколько продуманными и эффективными могут быть механизмы размножения в природе.
Колония водорослей вольвокс
То, что напоминает знаменитого колобка Pac-Man из одноименной видеоигры, представляет собой сферическую колонию одноклеточных зеленых водорослей вольвокс в момент "разрыва" материнской колонии, высвобождающей дочерние организмы.
Вольвокс — шикарный пример коллективного поведения у простейших. Тысячи клеток работают вместе как единый организм.
Голова ленточного червя
Это детальный снимок сколекса — головной части ленточных червей, где располагаются органы фиксации, представленные крючками (снизу) и присосками (две сверху). Эти органы позволяют паразиту надежно крепиться к стенкам кишечника носителя и проживать в таком положении лучшие годы своей жизни, оставляя после себя бесчисленное потомство.
Сколекс — пример поразительной эволюционной адаптации; миллионы лет поиска идеального решения.
Колония грибов в почве
Это колония грибов в почве. Если бы я увидел это изображение вне контекста, то решил бы, что передо мной работа какого-нибудь пейзажиста из Японии, который запечатлел заходящее Солнце над цветочным полем.
Грибы играют крайне важную роль в экосистемах, взяв на себя обязанности разложения органической материи с целью возвращения питательных веществ в почву. Грибной мицелий формирует сложные подземные сети, некоторых из которых могут простираться на десятки километров. Эти сети используются растениями (включая деревья) для обмена питательными веществами и даже информацией.
Споры лилии
Каждое пыльцевое зерно, обладающее сложной скульптурной поверхностью, представляет собой мужскую гамету растения, которая заключена в защитную оболочку с уникальным рельефом.
Такой подход дает возможность идентифицировать различные типы нервных клеток, специфику связи между ними и помогает ученым понять процессы формирования нервной системы.
Внутреннее ухо крысы
Структура улитки внутреннего уха грызуна с чувствительными волосковыми клетками (красные) и нейронами (зеленые).
Этот чрезвычайно сложный инструмент преобразует звуковые волны в электрические сигналы, которые, достигнув мозга, интерпретируются как звук.
Глаз паука-сенокосца
Это один из восьми глаз паука-сенокосца, состоящий из множества линз. И хотя эти членистоногие могут казаться примитивными, их зрительная система — настоящее чудо природной инженерии.
Каждое перышко синицы состоит из тысяч и тысяч микроскопических элементов, создающих неповторимый оптический эффект, который помогает птицам в терморегуляции и маскировке.
В 1913 году в журнале Chemische Berichte появилась статья ничем не примечательного немецкого химика Вальтера Лёба (7 мая 1872 года — 3 февраля 1916 года). Он работал при больнице имени Вирхова в Берлине, никогда не был знаменит и не претендовал на революционные открытия.
В рамках незамысловатого авторского эксперимента Лёб взял простые неорганические соединения — воду, аммиак и углекислый газ — и подверг их воздействию электрических разрядов. В результате химик получил глицин (простейшую аминокислоту), формальдегид и сахара.
Почему этот эксперимент так важен? Дело в том, что формальдегид и сахара — это "химические кирпичики", из которых строится все живое на Земле. Лёб доказал экспериментально, что для возникновения основы жизни не нужны магия или "Архитектор".
Почему эксперимент остался незамеченным?
Все проще простого: научное сообщество XX века не интересовал скромный химик из больничной лаборатории. Его работу просто проигнорировали.
Примечательно, что до Лёба, в 1897 году, подобный эксперимент пытались реализовать сербские химики С. М. Лозанич и М. Ц. Йовишич, но не располагали необходимым оборудованием. О теоретическом вкладе своих предшественников Лёб честно упомянул в своей статье.
1953 год: Миллер повторяет открытие
Спустя 40 лет молодой студент Чикагского университета Стэнли Миллер (7 марта 1930 года — 20 мая 2007 года) поставил похожий опыт под руководством нобелевского лауреата Гарольда Юри (29 апреля 1893 года — 5 января 1981 года).
Миллер создал в лаборатории "первичный бульон": смесь метана, аммиака, водорода и воды. Имитируя молнии электрическими разрядами, он инициировал химические реакции.
Через неделю в колбе было обнаружено пять аминокислот — "строительные блоки" белков, из которых состоит все живое.
Результаты эксперимента Миллера были опубликованы в журнале Science в 1953 году, и они тут же сделали его знаменитым. Этот эксперимент стал одним из самых цитируемых в истории биологии (когда я учился в школе, то мы его даже повторяли).
Повторный анализ
Миллер — настоящий ученый, который позаботился о том, чтобы будущие поколения имели доступ к его исходным материалам. В 2008 году исследователи проанализировали запечатанные пробирки из оригинальных экспериментов 1950-х годов, используя современные методы и инструменты.
Результат оказался еще более впечатляющим: вместо пяти аминокислот, которые идентифицировал Миллер, в пробирках нашли 22 аминокислоты! Просто в 1953 году в распоряжении ученых еще не было достаточно чувствительного оборудования, чтобы их все обнаружить.
Это означает, что "первичный бульон" молодой Земли, который воссоздал в лаборатории Миллер, был гораздо богаче органическими соединениями, чем считалось ранее.
Революционные эксперименты
Эксперименты Лёба и Миллера доказывают один фундаментальный факт: ключевые молекулы, необходимые для возникновения жизни, могли сформироваться естественным образом на молодой Земле.
Все необходимые для этого ингредиенты были в изобилии:
Вода — покрывала большую часть планеты;
Простые газы (метан, аммиак, водород) — присутствовали в атмосфере;
Вулканическая активность обеспечивала дополнительную энергию и доставляла новые химические элементы.
Ранняя Земля была гигантской естественной лабораторией, в которой на протяжении миллионов лет шли химические эксперименты. И в итоге эти эксперименты привели к появлению первых клеток, а затем — к невероятному разнообразию жизни, которое мы видим сегодня.
Современные исследования
Сегодня ученые пытаются разобраться с тем, как из простых аминокислот могли сформироваться первые самовоспроизводящиеся молекулы — предки ДНК и РНК.
Это все еще одна из величайших загадок науки. Но благодаря забытому эксперименту Вальтера Лёба и знаменитому опыту Стэнли Миллера мы знаем: для появления жизни не требуется магия. Нужны лишь правильные химические условия и время.
Понимание механизма зарождения жизни нисколько не умаляет того, что жизнь сама по себе — невероятное чудо. Напротив — это делает ее еще более удивительной. Подумайте: простые молекулы, столкнувшиеся в первичном океане миллиарды лет назад, породили невероятную цепочку событий. От первых аминокислот до человека, способного изучать собственное происхождение, задавать вопросы, искать ответы и восхищаться красотой Вселенной.
Это чудо не становится меньше оттого, что мы понимаем его химию. Оно становится глубже, масштабнее, величественнее. Мы — дети звездной пыли и электрических разрядов, случайной встречи молекул и миллиардов лет эволюции. И в этом — настоящее волшебство познания.
На нашей удивительной планете проживает не менее удивительное создание, которое плавало в Мировом океане задолго до появления рыб, видело, как материки раскалывались и соединялись вновь, пережило все массовые вымирания и сохранилось до наших дней практически в неизменном виде.
Имя этого чуда — камерный наутилус, и оно представляет собой живое ископаемое возрастом 480 миллионов лет. Когда на суше начали доминировать динозавры, наутилусы уже миллионы лет бороздили океанские глубины. Когда на Землю упал огромный астероид, поставивший жирную точку в истории динозавров, наутилусы продолжили свое существование, словно ничего не произошло.
Сегодня этот головоногий моллюск, являющийся дальним родственником осьминогов и кальмаров, обитает в тропических водах Индийского и Тихого океанов.
Много щупалец не бывает!
У наутилуса более 90 щупалец — рекорд среди всех головоногих моллюсков. Для сравнения: у осьминога их всего восемь, у кальмара — десять. Однако щупальца наутилуса устроены иначе — они лишены присосок, но вместо этого покрыты бороздками и выступами, которые выделяют липкий секрет. Этим "клеем" наутилус захватывает и удерживает добычу, подтягивая ее ко рту.
Острый клювообразный рот легко разламывает панцири крабов и креветок, а радула — полоска ткани, усеянная крошечными зубами, — измельчает пищу до нужной консистенции. Излюбленное место охоты наутилусов — рифы. Там это головоногое творение природы ощупывает щупальцами каждую расщелину в поисках добычи.
Примитивные глаза и реактивный двигатель
Глаза наутилуса устроены примитивно — это простые камеры-обскуры без хрусталика, способные различать только свет и темноту. Зато у него невероятно развиты осязание и обоняние. Наутилус непрерывно "пробует на вкус" окружающий мир своими щупальцами, определяя химический состав воды и фиксируя любые в ней изменения, что позволяет находить пищу даже в кромешной тьме.
Для перемещения в водной толще наутилус использует реактивное движение — выталкивает поглощаемую воду из мантийной полости через специальную трубку-сифон. Меняя направление сифона, этот моллюск может двигаться вперед, назад и даже боком. Данный способ передвижения, появившийся сотни миллионов лет назад, очевидно, до сих пор остается очень эффективным.
Подводный дирижабль с 30 камерами
Раковина наутилуса — инженерное чудо природы диаметром 16-21 сантиметр со специфическими красными узорами на серо-белом или кремовом фоне. У взрослых особей она разделена на 30 изолированных камер, соединенных тонкой трубкой — сифункулом. Только в самой большой, последней камере живет сам моллюск. Остальные заполнены смесью газа и жидкости.
Если наутилус хочет всплыть, он откачивает жидкость из камер через сифункул, оставляя в них только газ. Если существо хочет погрузиться, оно поглощает воду и наполняет ею камеры. Умение пользоваться этим биологическим балластным механизмом, позволяющим точно контролировать глубину погружения, наутилус оттачивает годами. Только что вылупившийся наутилус носит раковину, разделенную на семь или восемь небольших камер. По мере роста наутилус расширяет свое жизненное пространство, строя новые камеры, соединенные со старыми.
Жизнь между мирами
Днем наутилусы отдыхают на глубине до 700 метров, прячась от хищников вдоль рифовых склонов. Заприметив опасность, наутилус максимально втягивается в раковину и "закупоривает" отверстие специальным кожным капюшоном, превращая свой "переносной дом" в неприступную крепость.
Но с наступлением темноты все меняется. Наутилусы поднимаются на глубину около 70 метров, чтобы осуществить две базовые задачи: удовлетворить голод и размножиться.
Эта ежедневная миграция между глубинами может превышать 600 метров в одну сторону — впечатляющее путешествие для существа размером с небольшую тарелку.
Долгожители океанов
В мире головоногих моллюсков наутилус — настоящий Мафусаил. Большинство осьминогов и кальмаров живут год-два, максимум пять лет. Наутилус может прожить более 20 лет!
Однако за долголетие приходится платить медленным размножением. Самка становится половозрелой только к 12-15 годам (если доживет) и откладывает всего 10-18 яиц в год. Яйца, размером и формой напоминающие головки чеснока, развиваются около 12 месяцев.
Угроза исчезновения
Красота погубила наутилусов. Внутренние стенки их раковин покрыты перламутром, что делает их желанным трофеем для коллекционеров. В прошлом пустые раковины собирали на берегу, а теперь же ведется целенаправленный глубоководный промысел живых наутилусов.
Медленное размножение делает популяцию крайне уязвимой. В 2017 году камерный наутилус пополнил список видов, находящихся под угрозой исчезновения. Существо, пережившее все катастрофы за 480 миллионов лет, может не пережить соседства с человеком.
Совершенство не требует изменений
Почему наутилус практически не изменился за полмиллиарда лет? Потому что его конструкция оказалась настолько удачным эволюционным решением, что по сей день не требует улучшений. Камерная раковина, реактивное движение, множество сверхчувствительных щупалец — все это работало идеально как в древних океанах, так и продолжает работать сегодня.
Мировой океан покрывает около 70% планеты, но остается одним из самых малоизученных мест на Земле. В его глубинах происходят вещи, которые могли бы показаться выдумкой фантастов — и некоторые из этих явлений таковыми считались долгое время. Но феномены, представленные в статье, реальны: их документируют и изучают ученые.
Брайниклы — ледяные "пальцы смерти"
Под морским льдом Антарктики растут ледяные сталактиты, смертельные для донных обитателей. Когда морская вода замерзает, соль выталкивается наружу, образуя супер-соленый и супер-холодный рассол. Он тяжелее обычной морской воды и опускается ко дну, при этом температура рассола настолько низка, что он замораживает окружающую жидкость при контакте.
Получается полая ледяная трубка, растущая со скоростью нескольких метров в день. Достигнув дна, брайникл образует "якорный лед", который запирает морских ежей и морские звезды в ледяную ловушку.
Примечательно, что об этом явлении известно еще с 1960-х годов, но впервые оно было запечатлено только в 2011 году.
Молочные моря
Моряки веками сообщали о светящихся молочно-белых водах, но ученые (на то они и ученые) относились к этому скептически вплоть до 2006 года, пока не появились убедительные доказательства в виде спутниковых снимков.
С орбиты Земли было зафиксировано аномальное свечение площадью в тысячи квадратных километров. Причина — биолюминесцентные бактерии, собирающиеся в огромных количествах.
В отличие от обычных биолюминесцентных вспышек планктона, "молочные моря" светятся непрерывно часами.
Считается, что так бактерии привлекают рыб, чтобы быть съеденными для дальнейшего проживания в их кишечнике.
Подводные соленые озера
На дне океана встречаются "озера", представляющие собой скопления сверхсоленой воды (в 4-5 раз более соленая, чем окружающая морская вода) с метаном и сероводородом. Высокая плотность этих образований не дает им смешаться с окружающей водой, что и формирует четкую границу.
Большинство живых организмов, случайно заплывших в такое озеро, погибают мгновенно. Однако эволюционно адаптированные трубчатые черви и простейшие селятся по краям и чувствуют себя прекрасно.
Дайверы, посещавшие такие озера, описывают опыт как "визит на другую планету".
Поророка — волна, идущая против течения
В устье Амазонки можно наблюдать поразительное явление: чрезвычайно мощный океанский прилив временно обращает течение реки вспять. За счет этого образуется приливная волна высотой до четырех метров, которая движется вглубь континента на расстояние до 800 километров.
Название "поророка" на языке народа тупинамба означает "великий рев" — звук волны, напоминающий хищный рев, появляется примерно за 30 минут до ее прихода. Явление происходит дважды в месяц во время полнолуния и новолуния.
Поророка — природный дар для серферов, которые катаются на этой волне до 40 минут без остановок, преодолевая десятки километров.
Подводные круги иглобрюхов
В 1995 году у берегов Японии дайверы обнаружили идеальные геометрические круги диаметром до двух метров. Объяснение их природы было получено лишь в 2011 году с развитием океанологии.
Оказалось, что круги — продукт "творчества" самцов иглобрюхих рыб, длина тела которых достигает всего 12 сантиметров. Рыбка несколько дней работает над созданием радиальных гребней, украшая их камнями и ракушками. Для чего? Чтобы привлечь самку.
Дело в том, что слабый, больной или зараженный паразитами самец не имеет запаса сил для создания подобной структуры. Поэтому самки выбирают исключительно сильных и здоровых производителей, способных дать наиболее живучее потомство. Донные круги — надежная подсказка в выборе партнера.
Задача науки — искать правду, какой бы она ни была. На этой неделе правда оказалась неожиданной: Титан, возможно, не такой, каким мы его представляли, Арктика тает быстрее худших прогнозов, а феномен Вифлеемской звезды получил научное объяснение. Параллельно Китай объявил о пяти крупных космических миссиях, а BYD обходит Tesla и становится крупнейшим продавцом электромобилей.
Предлагаю вашему вниманию краткий обзор пяти научных событий последних дней, часть из которых окажет прямое влияние на наше будущее.
Титан лишен подповерхностного океана
В 2008 году, проанализировав массив данных, переданных космическим аппаратом NASA "Кассини", независимые международные команды исследователей пришли к выводу: Титан, крупнейший спутник Сатурна, обладает подповерхностным океаном.
Ключевым аргументом стал факт многочисленных смещений поверхностных объектов Титана, выявленных в ходе радарных наблюдений "Кассини". Ученые тогда связали это с тем, что ледяная кора "плавает" над подповерхностным океаном, который изолирует ее от каменного ядра.
Но, вероятно, исследователи ошибались.
Повторный анализ данных с использованием новых методов, снижающих шум в измерениях, позволил обнаружить задержку в реакции Титана на приливные силы Сатурна. Когда окольцованный гигант гравитационно "мнет" спутник, то изменение его формы запаздывает примерно на 15 часов относительно пика приливного воздействия. Это указывает на сильное рассеивание энергии внутри Титана — как если бы ложкой размешивали густой кленовый сироп, а не воду.
Моделирование показывает, что под ледяной корой Титана, скорее всего, скрываются обширные слои "слякоти" — частично растаявшего водяного льда — вкупе с карманами чистой воды.
Если это так, то шансы на обитаемость Титана возрастают. Связано это с тем, что температура и концентрация питательных веществ в небольших карманах воды выше, чем в гипотетическом глобальном океане.
Все это и многое другое предстоит проверить ротационному аппарату NASA Dragonfly, который отправится к Титану в июле 2028 года; прибытие на спутник Сатурна ожидается в 2034 году.
Арктика нагревается в 4 раза быстрее остальной планеты
Национальное управление океанических и атмосферных исследований США (NOAA) опубликовало 20-й Арктический отчет. Главный вывод неутешителен: полярный регион продолжает нагреваться примерно в четыре раза быстрее, чем остальная часть планеты.
Виной всему петли обратной связи — самоусиливающиеся процессы, разгоняющие потепление.
Ключевой механизм связан с "разрывом" морского льда. Когда его какая-то часть тает, то обнажается темная вода, поглощающая солнечное тепло намного эффективнее, чем белый лед. Нагрев воды провоцирует таяние большего количества льда, что приводит к обнажению большего количества темной воды, из-за которой тает еще больше льда, — и цикл раскручивается.
А вот вдоль побережья Аляски преобладает другой механизм. Снег на поверхности морского льда содержит бром, источником которого является морская соль. Под действием солнечного излучения бром высвобождается и поднимается в атмосферу, разрушая озоновый слой в ее нижних слоях. Это приводит к тому, что регион получает еще больше солнечного излучения, которое высвобождает еще больше брома, отправляющегося разрушать озоновый слой, — и цикл набирает обороты.
В 2025 году арктический морской лед достиг минимальной площади за 47 лет спутниковых наблюдений — всего 14,33 миллиона квадратных километров. Это на 1,3 миллиона квадратных километров меньше средних значений. Для сравнения: площадь Японии составляет около 378 000 квадратных километров.
У всего этого — далеко идущие последствия. Арктическая тундра тысячелетиями поглощала углекислый газ, запирая его в вечной мерзлоте, представляющей собой естественный резервуар для хранения этого парникового газа. Теперь же, когда вечная мерзлота стремительно тает, запускается обратный эффект: арктическая тундра высвобождает колоссальное количество углекислого газа, что усугубляет климатические изменения региона и Земли в целом.
Вифлеемская звезда могла быть кометой
Планетолог NASA Марк Мэтни опубликовал исследование, в котором говорится, что загадочное небесное явление, упомянутое в Евангелии от Матфея, на самом деле было очень редкой кометой.
Главная трудность в понимании природы Вифлеемской звезды кроется в двух моментах из Евангелия: небесный объект якобы «вел» волхвов и затем «стоял над» Вифлеемом. Обычные небесные тела — звезды, планеты, кометы — не могут одновременно двигаться и останавливаться, так как их орбитальное движение подчиняется законам небесной механики.
Но моделирование показало, что нетипичная комета все же могла создать тот эффект, что упомянут в Писании. Для этого комета должна была пролететь так близко к Земле, чтобы наша планета временно оказалась внутри ее огромной комы (газо-пылевой оболочки). На короткий промежуток времени видимое смещение объекта могло стать настолько незначительным, что он выглядел бы "зависшим" над одной областью неба (над Вифлеемом) на несколько часов.
Мэтни отмечает, что для реализации этого сценария нужны действительно очень редкие условия: дистанция сближения на уровне среднего расстояния от Земли до Луны (примерно 384 400 километров), правильная ориентация кометной траектории относительно земного вращения, удачный регион и момент наблюдения.
Мэтни признает, что физически такое возможно, но для этого необходимо редкое, почти невероятное совпадение ряда параметров.
Крайне интересный факт: в хрониках китайских астрономов есть запись за 5 год до н. э., в которой говорится о яркой комете. В это же время, предположительно, родился Иисус Христос. Так что связь между Вифлеемской звездой и кометой становится все более очевидной.
Китай анонсировал пять крупных космических миссий на 2026 год
Без видеороликов под пафосную музыку и громких обещаний в соцсетях Китайское национальное космическое управление (CNSA) обнародовало дорожную карту на 2026 год.
В августе 2026 года к южному полюсу Луны отправится миссия "Чанъэ-7", которая будет состоять из орбитального аппарата, посадочной платформы, лунохода и "прыгающего" мини-зонда для исследования кратеров, находящихся в вечной тени. Посадка будет осуществлена на освещенной вершине вблизи 21-километрового кратера Шеклтон.
Почему Китай так заинтересован в изучении южного полюса земного спутника? Все дело в обильных залежах водяного льда, обнаруженных там в рамках миссий космических агентств других стран. Вода — крайне важный ресурс для тех, кто стремится возвести на Луне базу постоянного присутствия людей.
Образцы астероида и свидание с кометой
В июле 2026 года зонд "Тяньвэнь-2", запущенный в мае 2025 года, достигнет астероида Камоалева, чтобы собрать около 100 граммов грунта с его поверхности. Если все пройдет гладко, то аппарат устремится к комете 311P/PANSTARRS в поясе астероидов, но перед этим пролетит мимо Земли, чтобы сбросить астероидные образцы.
Встреча с 311P/PANSTARRS ожидается в 2034 году.
Год на орбите
Китай продолжит активно эксплуатировать собственную орбитальную станцию "Тяньгун". В 2026 году она примет экипажи миссий "Шэньчжоу-23" и "Шэньчжоу-24", но наибольший интерес представляет тот факт, что один из тайконавтов текущей миссии "Шэньчжоу-22" останется на станции — его безвылазное пребывание на орбите должно будет превысить год.
Такое решение объясняется необходимостью испытания человеческих возможностей перед будущими пилотируемыми полетами на Луну.
Корабль нового поколения
В середине 2026 года состоится первый беспилотный полет корабля нового поколения "Мэнчжоу-1". Его разрабатывают специально для лунных миссий, но ожидается, что он так же заменит давно устаревший "Шэньчжоу" (китайская версия "Союза"), став основой пилотируемой программы Китая.
Конкурент "Хаббла"
2026 год Поднебесная планирует завершить запуском космического телескопа "Сюньтянь". Диаметр его главного зеркала составляет два метра, что немногим меньше диаметра зеркала космического телескопа NASA/ESA "Хаббл" (2,4 метра). Однако поле зрения "Сюньтянь" в 300 раз шире "Хаббловского".
Интересно, что телескоп будет размещен на одной орбите со станцией "Тяньгун", так что тайконавты смогут его периодически обслуживать и модернизировать без необходимости организовывать чудовищно дорогие миссии.
BYD обгоняет Tesla и становится крупнейшим продавцом электромобилей в мире
По итогам 2025 года китайский конгломерат Build Your Dreams (BYD) официально обойдет Tesla и станет крупнейшим продавцом электромобилей в мире.
Tesla второй год демонстрирует обвал продаж, тогда как BYD — уверенный рост.
Пока Маск играет в политика, ругаясь со всеми в своей социальной сети, китайский автопроизводитель начал строить завод в Венгрии и подготавливать почву для запуска производства в Турции. В ноябре экспорт BYD вырос на 325,9% в годовом исчислении, а ключевым рынком сбыта автомобилей становится Европа. Tesla же теряет треть североамериканского и европейского рынков.
Как в космосе, так и в автопроизводстве, Китай использует одну и ту же стратегию: меньше слов — больше дела.
Ранние древнегреческие ученые, такие как Фалес Милетский (624–546 годы до н. э.), первыми начали подозревать, что Солнце — это не бог Гелиос, неустанно мчащийся на золотой колеснице вокруг Земли, а просто огромный огненный шар, "висящий" в пространстве.
В 450 году до н. э. древнегреческий философ Анаксагор (500–428 годы до н. э.) стал первым известным нам человеком в истории, который в своих работах предположил, что звезды — это другие солнца, подобные нашему, но находящиеся так далеко от Земли, что кажутся лишь крошечными точками на ночном небе.
Потребовалось почти два тысячелетия, прежде чем Научная революция (1550–1700 годы) и эпоха Просвещения (1685–1815 годы) дали толчок развитию науки и созданию телескопов, что позволило установить точную природу Солнца, звезд и вычислить расстояния до них.
В середине XIX века достижения в спектроскопии и фотографии, а вместе с ними возможность измерять температуру поверхности и химический состав Солнца и других светил, предоставили окончательное доказательство: Солнце — это просто звезда.
Поклонение Солнцу в древности
На протяжении тысячелетий люди смотрели на Солнце и видели в нем всемогущественное божество, дарующее свет и тепло, прогоняющее тьму и дающее пищу всем живым существам.
В Древнем Египте Ра — бог Солнца с головой сокола — почитался как царь богов и создатель мира. А кровожадные ацтеки, населявшие Мезоамерику, рассматривали Солнце как божество Уицилопочтли, представляющее собой большое синее человекоподобное существо в доспехах и шлеме, украшенном перьями колибри. Ацтеки регулярно устраивали человеческие жертвоприношения, чтобы Уицилопочтли не разгневался и не наслал на непокорных засуху.
В индуизме, старейшей из существующих религий мира, которую до сих пор исповедуют более 80% индийцев, Солнце ассоциируется с богом Сурьей, разгоняющим тьму.
Научный подход Анаксагора
В V веке до н. э. греческий философ Анаксагор, выходец из Малой Азии, прибыл в Афины и стал одним из первых, кто стремился объяснить природные явления без необходимости привлекать богов с их замыслами. Поиск естественных причин позволил Анаксагору заложить фундамент современной науки.
Анаксагор описывал все существующее как смесь бесконечно малых, неразрушимых "семян" — возможно, имея в виду то, что позже назовут атомами и молекулами. Он совершенно правильно объяснил, как происходят затмения, установил, что Луна не светится сама по себе, а лишь отражает свет Солнца. Анаксагор пытался понять природу метеоров, радуги, Солнца и даже рассуждал о существовании внеземной жизни.
Он считал, что Солнце — это камень, отколовшийся от Земли и воспламенившийся из-за быстрого вращения, и что вообще все небесные тела сделаны из камня. Вероятно, его идея была вдохновлена падением метеорита размером с повозку у пролива Дарданеллы в 467 году до н. э. Изучив находку, Анаксагор пришел к выводу, что метеориты — это фрагменты Солнца, отколовшиеся от него и упавшие на Землю. Позже он заключил, что все звезды — горящие камни.
Своими рассуждениями, которые озвучивались публично, Анаксагор нарушил афинские законы о богохульстве. За это его приговорили к смертной казни, но по каким-то причинам казнь заменили изгнанием (вероятно, вмешались "интеллектуальные элиты"). Осев в городе Лампсак, Анаксагор нашел более благодарную аудиторию. Там он преподавал и исследовал мир до самой смерти в 428 году до н. э.
Изучая историю Анаксагора, я думал: из этого можно было бы снять эпичный фильм. Философ, который объяснил природу затмений и особенности Луны без телескопа, приблизился к пониманию микромира без микроскопа и едва не был казнен за идеи, опережающие эпоху. Гений против толпы, разум против слепой веры.
Эпоха Возрождения и Научная революция
Примерно 1 800 лет спустя польский астроном и математик Николай Коперник (1473–1543 годы) сделал огромный вклад в Научную революцию, опубликовав свой фундаментальный труд "О вращении небесных сфер". В своей работе Коперник показал, что Земля — всего лишь планета, вращающаяся вокруг Солнца.
Примечательно, что труд был опубликован в 1543 году, буквально перед смертью Коперника. Он намеренно тянул до последнего, чтобы избежать преследований со стороны католической церкви.
В 1584 году итальянский философ и доминиканский монах Джордано Бруно (1548–1600 годы) пошел дальше. Он опубликовал две работы, в которых не только отстаивал теорию Коперника, но и утверждал: если планеты вращаются вокруг Солнца, а Земля — просто еще одна планета, то и Солнце не должно считаться чем-то особенным. Кроме того, Бруно провел различие между "солнцами", генерирующими собственный свет и тепло, и "землями" с "лунами", которые вокруг них вращаются. Современный астрофизик Стивен Сотер считает, что Бруно был первым человеком в истории, который в полной мере осознал концепцию, что звезды — это другие солнца, вокруг которых вращаются другие планеты и спутники.
Инквизиция обвинила Бруно в ереси за отрицание христианских догматов и пантеистическую философию — он поставил знак равенства между Богом и Вселенной. Космологические идеи стали последним гвоздем в крышку гроба. В 1600 году философа сожгли на костре.
Спектроскопия — окончательное доказательство
В 1666 году Исаак Ньютон (1643–1727 годы), экспериментируя с призмами, установил, что они разделяют белый свет на спектр составляющих его частей.
В 1814 году немецкий физик Йозеф фон Фраунгофер (1787–1826 годы) изобрел спектроскоп и составил карту 574 темных линий в спектре Солнца.
К 1857 году немецкие физики Густав Кирхгоф (1824–1887 годы) и Роберт Бунзен (1811–1899 годы) установили связь между химическими элементами и их индивидуальными спектральными узорами. Каждый элемент поглощает свет определенного цвета, оставляя специфическую "подпись".
Итальянский священник-иезуит и астроном Анджело Секки (1818–1878 годы) — пионер изучения звездной спектроскопии. Он самостоятельно проанализировал около 4 000 звездных спектрограмм, установив, что звезды можно разделить на несколько типов по их уникальным спектральным узорам.
Секки разработал первую в мире систему классификации звезд и стал одним из первых ученых, однозначно заявивших, что Солнце — это звезда. И далеко не уникальная звезда.
Что мы теперь знаем о Солнце
Сегодня мы знаем, что Солнце — это желтый карлик, состоящий примерно из 73% водорода, 25% гелия и 2% более тяжелых элементов, таких как кислород, углерод, неон и железо. Его спектральный класс — G2V, где G2 — температура поверхности (около 5 505 градусов Цельсия), а V указывает на главную последовательность: Солнце активно превращает водород в гелий, находясь в самом расцвете сил. В таком состоянии наше светило пробудет еще несколько миллиардов лет.
Солнце — центр Солнечной системы, и все вращается вокруг него: планеты, астероиды, кометы и "ледяной мусор" пояса Койпера и облака Оорта. Невероятно, но всего четыре столетия назад за эти слова люди рисковали услышать треск дров под ногами...
Всяких разных вирусов существует много: иммуннодефицита человека, вирусы папилломы, герпес-вирусы, гриппа и далее, и далее. Выбирай - не хочу. Классифицируются они сразу по нескольким системам, взаимодополняющим друг друга. Например, по тропности - способности заражать определённые типы клеток. Или по виду генетического материала: ДНК или РНК.
Одним из видов таких вот классификторов является внутриклеточная форма генетического материала вируса. Обычно вирусы представляют вот так:
Это нечто называется вирионом и представляют собой полноценную вирусную частицу, способную заражать клетки. Как только вирус попадает в клетку, его внешняя оболочка раскрывается, освобождая генетический материал в виде РНК или ДНК.
Дальше возможные следующие ситуации:
ДНК вируса встраивается в ДНК клетки, образуя провирус;
ДНК или РНК вируса остаётся в клетке в виде вирусной эписомы, встраивания не происходит;
Комбинированный вариант, когда в ДНК клетки встаривается ДНК вируса (или её часть) , а в самой клетке дополнительно находится эписома.
Для борьбы с вирусами у организма есть несколько механизмов, однако они не совершенны. В некоторых случаях бывает так, что генетический материал вируса остаётся в клетке и не подавляется иммунной системой. Тогда инфекция становится хронической. Самые яркие примеры подобных вирусов - это ВИЧ, ВПЧ, герпес-вирусы, гепатиты B и С.
С гепатитом С человечество научилось бороться, а вот от всего остального излечения нет. Есть только поддерживающая терапия, которая позволяет прервать литический цикл (это когда ДНК или РНК вируса начинает штамповать новые вирионы).
Самым ярким примером, с которым знаком почти каждый, является вирус простого герпеса 1типа (ВПГ 1) . Тот самый, который обычно проявляется «простудой» на губах:
ВПГ 1 - далеко не безопасный вирус. Всё больше доказательств того, что он может быть причиной или ко-фактором развития болезни Альцгеймера в некоторых случаях
Когда складываются условия, эписома ВПГ 1 активируется. Можно подождать, а можно намазаться мазью или выпить таблетки с ацикловиром и всё пройдёт быстро. До следующего раза, потому что существующие лекарства не способны подавить эписому. Та надёжна укрыта в нервных клетках и только и ждёт своего времени:
Насколько опасны вирусы? Зависит от вида, но даже простенький вирус гриппа приводит к сотням тысячам госпитализаций и десяткам тысяч смертям в сезон в стране вроде США. ВПЧ или герпесы разного вида становятся причиной тяжёлых заболеваний, в том числе и онкологичеких. А вирусы гепатита или ВИЧ без лечения приведут к неизбежному трындецу.
В общем, было бы хорошо все эти вирусы из организма убрать. Увы, как и было сказано, наша собственная иммунная система на это не способна. Поэтому человечеству опять пришлось взять всё в свои руки. Как же избавиться от хронической вирусной инфекции?
Вариат первый, который сразу же приходит на ум: убить клетку, содержащую вирус. Так поступает наша собственная иммунная система.
Однако тут есть два препятствия. Во-первых, расточительно. Клеток у нас много, около 40 триллионов, но всё равно жалко. Кроме того, часть из этих клеток - это чувствительные нейроны, а их убивать очень не хочется.
Во-вторых, заражённые клетки тяжело распознать внутри организма. Вне литического цикла, когда вирус не размножается, заражённые клетки бывают и вовсе не отличимы от обычных с внешней стороны.
Кроме того, многие вирусы, хотя и предпочитают какой-то конкретный тип клеток, на деле заражают и множество других. Например, многие слышали, что ВИЧ поражает клетки иммунной системы, в первую очередь Т-лимфоциты. Однако, помимо них, ВИЧ создаёт вирусный резервуары в множестве других клетках и органах:
Места расположение резервуаров ВИЧ. Салатовым цветом - неповреждённая ДНК, серым - дефектная
Каким-то образом их нужно выцепить, предварительно распознав. Задача нетривиальная, да и, как было сказано, такое количество клеток уничтожать жаль. Пригодятся ещё.
На деле уничтожить заражённые клетки пока настолько сложно, что человечество пошло другим путём. А именно, начало пытаться уничтожить провирусы и/или эписомы.
Лет 15 назад об этом можно было только мечтать, но сейчас всё изменилось. В 2013 году была впервые продемонстрирована технология генного редактирования CRISPR/Cas9. Благодаря ей у нас появилась возможность быстро и относительно дёшево (всего-то пара миллионов долларов за укол, мелочи) работать с ДНК.
CRISPR/Cas9 уже применяется для лечения нескольких наследственных заболеваний вроде бета-талассемии. И вот, пришло время попробовать забороть ею вирусы. Одним из плюсов генной терапии является то, что убивать клетку не нужно.
Бороться с вирусами с помощью CRISPR/Cas9 можно тремя путями.
Первый и самый лучший: полностью вырезать из ДНК клетки провирус, а также развалить на части вирусную эписому. Только этот способ может гарантировать полное излечение.Когда-нибудь так и будет, но пока невозможно. Как мы уже говорили, вирусных резервуаров много и нужно уничтожить вирус во всех.К тому же, нынешние версии CRISPR/Cas9 обладают серьёзным недостатком в виде нецелевого редактирования. Помимо изменений в нужных участках ДНК, редактирование может произойти и в не нужных. Хотя ситуация эта редкая, может не повезти и задеть чувствительные участки генома. Так же есть проблемы со «склеиванием» после удаления фрагмента;
Второй вариант, оптимальный на сегодняшний день. Провирус и эписома не вырезаются, зато ломаются. Если таких поломок в коде вируса будет достаточное количество, он перестанет функционировать. Новые вирионы собраться просто не смогут. Риски первого варианта заметно понижены;
Третий, эпигенетический. Провирус и эписома остаются нетронутыми, но их активность заглушается. Почти во всех клетках человека одна и та же исходная ДНК, но в каждом типе клеток работает только её часть. Благодаря этому клетки печени работают как клетки печени, а не пытаются стать фибробластами.Достигается это при помощи процесса, называемого метилированием. В нужном участке ДНК к основанию присоединяется метильная метка, блокирующая или сильно подавляющая экспрессию гена. И вуаля — ген перестаёт работать, хотя из ДНК никуда не девается.
Именно последнюю идею взяли на вооружение в компании nChromaBio, решив забороть хронический гепатит B. Зачем напрягаться, если можно не напрягаться вырезать участки вируса, если можно сделать его неактивным?
В основе технологии, используемой компанией, лежит dCas9. Этот фермент не может резать ДНК (как полноценный Cas9), но может найти нужное место и присоединить к нему молекулу. В данном случае молекулу, которая заглушит гены гепатита B.
Вирус гепатита В — один из вирусов, который существует в клетке в виде эписомы. Причём его ДНК скручивается в кольцо, да ещё и ковалентно связывается с другими подобными кольцами.
Помимо эписомы, вирус также внедряет в ДНК клетки человека часть своей ДНК. Внедрённая вирусная ДНК не способна произвести новый вирион гепатита В, но зато штампует вирусные белки. Для здоровья белки эти совсем не полезны и могут приводить к разным мутациям.
Идея проста и изящна: напихать стоп-сигналов во все участки вируса:
Испытания проводились на мышках и на обезьянах. Подопытным вводилась как единоразовая доза, так и несколько доз. Активность вируса оценивалась по продукции белка HBsAg (поверхностный антиген вируса гепатита В) и с помощью биопсии.
Результаты оказались впечатляющи. Во-первых, не было обнаружено не целевого метелирования, а сама ДНК осталась без повреждений. Во-вторых, удалось эффективно подавить как интегрированную часть ДНК, так и кольцевую. Насколько долго — пока не понятно, но за более чем полгода активность не возвратилась на исходный уровень.
Самое главное — есть ли функциональное излечение? Это зависело от дозы и способа ввода препарата. Чем выше была доза — тем больше подавлялся вирус. Если препарат вводили в небольшой дозе, но несколько раз — вирус с каждым разом подавлялся всё больше и больше.
По итогу, при оптимальном введение, удалось понизить вирусную нагрузку в десять тысяч раз. У 5 из 6 животных поверхностный антиген HBsAg больше не определялся:
Логарифмический уровень производства антигена HBsAg
Подобный результат означает, что вирус более не активен.
Минус эпигенетического подхода обратная сторона плюсов. Да, ДНК при таком способе остаётся целой, но целыми остаются и вирус. Метильные метки достаточно стабильны, но со временем могут слетать. Учитывая, что речь идёт о хроническом заболевании, подобный подход может потребовать периодического повторения лечения.
Ну а nChromaBio прямо с 1 января 2026 года берётся за дело и начинает клинические испытания 1-2 фазы. В них примут участие 66 пациентов с хроническим гепатитом В. Всем им будет вводиться препарат в разных дозировках, а затем оцениваться состояние, как в краткосрочной перспективе (6 месяцев), так и в долгосрочной (5 лет).
P.S. Ещё у меня есть бессмысленные и беспощадные ТГ-каналы (ну а как без них?):
Вот тут про молекулярную биологию, медицину и новые исследования: https://t.me/nextmedi;
Бамбук — один из чемпионов растительного мира по скорости роста. Некоторые виды способны вытягиваться более чем на метр за сутки! Это почти четыре сантиметра в час — такой рост можно наблюдать буквально в реальном времени.
Сегодня подтвержденные рекорды принадлежат видам Phyllostachys bambusoides (мадаке) и Phyllostachys edulis (мосо), прирост которых может достигать 120 сантиметров за 24 часа. Средний же показатель для большинства видов бамбука составляет от 30 до 60 сантиметров в сутки в фазе активного роста.
Для сравнения: обычное дерево за год в среднем вырастает на 30-50 сантиметров. Бамбук перешагивает этот показатель за день.
Чем обусловлена суперспособность, которой природа наделила бамбук?
Главный секрет скорости
У большинства растений зона роста находится только на кончике побега — в верхушечной меристеме. Бамбук же устроен иначе: каждый его узел (то место, где стебель разделен перегородкой) содержит собственную меристему — участок активно делящихся клеток.
Молодой побег бамбука имеет десятки таких узлов, и когда он оказывается в благоприятных условиях, то все меристемы начинают работать одновременно. То есть каждый сегмент побега удлиняется параллельно с остальными.
Другими словами, бамбук растет не из одной точки, а сразу из десятков.
Готовая структура
Еще одна особенность, дающая бамбуку преимущество в росте, заключается в том, что побег выходит из земли уже полностью сформированным — со всеми узлами и сегментами. Ему не нужно создавать новую структуру, так как она была заложена еще в корневище. Поэтому побегу остается лишь увеличиваться в размере.
Большинству других растений, ростки которых вырываются на поверхность, приходится тратить время и энергию на постепенное формирование стебля и листьев. Бамбук же делает это заранее, находясь еще под землей, а на поверхности лишь разворачивает готовое. Процесс можно сравнить с растягиванием мехов гармони.
Кроме того, стебель бамбука внутри полый. Следовательно, растению не нужно тратить время и ресурсы на заполнение сердцевины плотной древесиной, как это делают деревья.
Несмотря на внутреннюю "пустоту", конструкция с перегородками-узлами обеспечивает бамбуку впечатляющую прочность, поэтому в некоторых регионах Земли его активно используют в качестве строительного материала.
Заботливая корневая система
Есть и еще один важный момент: бамбук — это трава, а не дерево. Его корневище (ризома) представляет собой сложную разветвленную подземную сеть, которая терпеливо накапливает питательные вещества и воду. Когда же приходит время роста, корневая система щедро снабжает побеги всем необходимым.
А вот деревья так не умеют. Их корни работают "в реальном времени", добывая ресурсы и сразу распределяя их между кроной, стволом и новыми ветвями.
В этом плане корневая система бамбука напоминает аккумулятор: она месяцами запасает все необходимое, а затем "разряжает" накопленное в ходе одного мощного рывка роста.
Мы с таким рвением устремляем взгляды в космос, изучая далекие планеты, звезды, туманности и галактики, что порой забываем о существовании не менее загадочной вселенной рядом с нами. И имя у этой вселенной — Мировой океан.
Как и космические просторы, океанские глубины полны тайн, многие из которых человечество только начинает разгадывать. Здесь, в подводном мире, обитают создания не менее удивительные, чем жители далеких планет, описанные на страницах научной фантастики.
Подобно космическим зондам, современные глубоководные аппараты и смелые фотографы исследуют темные глубины морей и океанов, открывая новые виды, природные явления и аномалии. Мировой океан покрывает более 70% поверхности нашей прекрасной планеты, но изучен лишь на 5% — меньше, чем поверхность далекого и безжизненного (скорее всего) Марса.
Итак, я предлагаю вашему вниманию десять удивительных фотографий подводных обитателей, каждая из которых открывает окно в этот загадочный водный мир, демонстрируя многообразие жизни в океанских глубинах.
Лимонная акула в сумерках
Это любопытная лимонная (желтая) акула, поднявшаяся к водной глади у берегов Багамских островов. Разделенная композиция снимка — с морским хищником в нижней части кадра и закатным свечением в верхней — создает почти мистическую атмосферу.
Лимонные акулы, несмотря на внушительные размеры (взрослые особи вырастают до 3,5 метра), очень осторожные и пугливые создания, старающиеся избегать контакта с людьми. Данный кадр — большая удача.
Материнская забота осьминога
Это самка карибского рифового осьминога, охраняющая свои полупрозрачные яйца, в которых уже виднеется ее крошечное потомство. Она истощена и доживает последние дни своей жизни.
Связано это с тем, что самки осьминогов перестают питаться во время высиживания потомства из-за активации особых желез, которые подавляют аппетит и полностью перестраивают поведение будущей матери. Все силы направляются на постоянную охрану кладки и обеспечение яиц кислородом.
Это очень специфическое программируемое самопожертвование в животном мире, эволюционный смысл которого пока до конца не ясен.
Следы человеческого безумия
На морском дне в ледяных водах Гренландии покоятся китовые кости — безмолвные свидетели китобойного промысла. Белые кости резко контрастируют с темным дном, создавая мрачный визуальный эффект. Эти останки будут десятилетиями служить убежищем для множества морских обитателей.
Глядя на этот снимок, на ум приходит высказывание древнегреческого философа Аристотеля:
"Природа не терпит пустоты".
Живое произведение искусства
В теплых водах у берегов Австралии притаился большой брюшной морской конек (лат. Hippocampus abdominalis). Это один из крупнейших видов морских коньков в мире, длина тела которого может достигать 35 сантиметров.
Это загадочное создание обладает способностью крайне эффективно менять окраску под цвет окружающих кораллов. Любопытный факт: потомство у морских коньков вынашивают самцы, а не самки. Все это напоминает нам о том, что Земля населена существами не менее удивительными, чем обитатели далеких миров, придуманные фантастами.
Живой парус
Затонувшее судно у берегов бразильского города Ресифи стало домом для тысяч морских обитателей, включая этих рыб, которые в момент наблюдения сформировали геометрическую фигуру, напоминающую парус корабля.
Учитывая, что из-за климатических изменений коралловые рифы исчезают с катастрофической скоростью, искусственные рифы из затонувших кораблей становятся критически важными для сохранения морского биоразнообразия.
Взгляд древнего гиганта
В заливе Магдалена у берегов Мексики встречи человека и серых китов — обычное явление. Эти морские гиганты, вырастающие до 15 метров, порой сами приближаются к лодкам, словно изучая людей с тем же любопытством, с каким мы наблюдаем за ними.
Серые киты совершают одни из самых длинных миграций среди всех млекопитающих, преодолевая до 20 000 километров в год, чтобы размножаться в теплых тропических водах после нагула в полярных регионах.
Балет дельфинов
Это группа атлантических пятнистых дельфинов (возможно, семья), резвящаяся в кристально чистых водах Багам. Они с легкостью развивают скорость до 40 километров в час и ныряют на глубину более 100 метров!
Интеллект этих морских млекопитающих позволяет им узнавать себя в зеркале, возвращаться в родные места из любой точки океана и сохранять память о сородичах на протяжении всей жизни.
Подводный сад
Необычная экосистема в холодных британских водах у берегов Шотландии, представленная фиолетовым морским ежом и офиурами, которые внешне похожи на морских звезд.
Эта фотография доказывает, что даже в суровых северных водах Мирового океана процветает сложная жизнь — яркие краски, сложные взаимосвязи и удивительные формы.
Первые "шаги"
У гренландских тюленей один из самых коротких периодов детства в животном мире — всего 14 дней от рождения до полной самостоятельности. В кадр попал малыш, который родился чуть больше двух недель назад, и вот он уже учится плавать, чтобы вскоре стать покорителем арктических вод.
Гренландские тюлени могут погружаться на глубину до 200 метров, используя темноту как надежное укрытие от хищников, которые предпочитают охотиться у поверхности.
Странная акула-молот
Четырехметровый самец акулы-молота, патрулирующий свои владения в водах северных Багам. Эти странные создания остаются практически неизменными сотни миллионов лет — эволюция подарила им идеальную "конструкцию", которая до сих пор не требует доработок.
Несмотря на грозный вид, акулы-молоты совершенно не интересуются людьми, предпочитая элегантно скользить в толще воды в поисках мелкой рыбы, кальмаров, осьминогов, крабов и креветок.
Уникальная форма головы, известная как цефалофойл, используется хищником для оглушения и прижимания добычи ко дну. Кроме того, этот инструмент позволяет акуле находить жертв, скрывающихся в грунте, по их электромагнитным импульсам.
В 2021 году морские биологи, трудящиеся на благо науки у берегов Новой Зеландии, впервые смогли сфотографировать и изучить с близкого расстояния удивительное существо — биолюминесцентную кайтфиновую акулу.
Эти хищники обитают в так называемой сумеречной зоне океана — на глубине от 200 до 1 000 метров, куда солнечный свет практически не проникает. Кайтфиновые акулы могут вырастать до внушительных 180 сантиметров в длину, что делает их абсолютными рекордсменами — в плане размера — среди биолюминесцентных позвоночных.
До недавнего времени ученые лишь предполагали, что эти акулы способны к самосвечению. Первые подозрения появились еще в 1980-х годах, но документальных доказательств не было. И вот команда исследователей из Католического университета Лувена в Бельгии под руководством Жерома Маллефета изучила несколько экземпляров таинственных акул, выловленных* у берегов Новой Зеландии, и окончательно подтвердила их биолюминесцентные способности.
*Во время научной "рыбалки" морской обитатель остается в воде, но вокруг него устанавливается ограждение, что позволяет изучать его с относительно близкого расстояния без причинения вреда.
В отличие от большинства наземных существ, которые используют яркую окраску для привлечения внимания, кайтфиновые акулы применяют биолюминесценцию с противоположной целью — чтобы стать невидимыми. Их тело излучает мягкое голубовато-зеленое свечение, которое прекрасно имитирует слабый солнечный свет, которому все же удается пробиться сквозь водную толщу.
Глядя снизу вверх, потенциальная добыча не видит силуэт акулы на фоне верхней толщи воды — хищник просто растворяется в окружающем свечении. А потом... кусь! И все. Такая невидимость дает огромное преимущество при охоте в полумраке океанических глубин.
Но маскировка — не единственное применение биолюминесценции кайтфиновыми акулами. Исследователи наблюдали, как они используют свое свечение в качестве "фонарика", подсвечивая креветок и кальмаров на темном морском дне перед атакой. Кроме того, яркое свечение репродуктивных органов помогает этим хищникам-одиночкам находить партнеров в бескрайней темноте глубин.
Примечательно, что спинной плавник акулы светится наиболее ярко, но его функция пока остается загадкой для ученых.
Кайтфиновые акулы уникальны еще в одном отношении — они одни из немногих животных, у которых биолюминесценция полностью контролируется гормонами. За включение свечения отвечает мелатонин — тот самый "гормон сна", который участвует в регуляции циркадных ритмов и помогает нам засыпать.
У акул мелатонин активирует специальные светящиеся органы — фотофоры. Адренокортикотропные гормоны, наоборот, подавляют свечение, позволяя акуле регулировать яркость свечения в зависимости от обстоятельств.
Если бы вы прямо сейчас оказались на ранней Земле, то первый вдох мог бы стать для вас последним — вы потеряли бы сознание быстрее, чем успели бы понять, что не так.
И дело не в том, что воздух был какой-то сверхопасной смесью. Просто в нем почти не было кислорода. Земная атмосфера тогда состояла в основном из углекислого газа, водяного пара и азота, а также примесей метана, аммиака и прочих вулканических газов. Планета, которую мы с гордостью и любовью называем домом, большую часть своей истории была чужой для сложной жизни — такой, как мы.
Жизнь на Земле, возраст которой составляет примерно 4,6 миллиарда лет, появилась довольно быстро — 3,5–3,8 миллиарда лет назад. Но это были представлители царства анаэробов — организмы, которым молекулярный кислород (O2) не просто не нужен: для них он был ядом. И так продолжалось миллиарды лет.
А потом появились они — цианобактерии.
Почему именно они? Эволюция. Эти микроскопические организмы научились использовать солнечный свет для расщепления воды и получения энергии. Бесконечный источник топлива прямо над "головой" — те, кто освоил этот трюк, выживали чаще и оставляли больше потомства. Побочным продуктом процесса — фотосинтеза — был кислород. Просто отход жизнедеятельности. Мусор. Выхлоп древней биологической машины.
Цианобактерии проживали в океанах, формируя на их поверхности зеленую пленку. Миллионы лет они выбрасывали кислород в воду и атмосферу. Поначалу этот газ не накапливался — он мгновенно вступал в реакцию прежде всего с железом, растворенным в воде, и оседал на дне в виде ржавых отложений. Красные полосчатые железные руды (в первую очередь гематит), которые мы добываем сегодня — это древний кислород, связанный с железом миллиарды лет назад.
Но примерно 2,4 миллиарда лет назад восстановленное железо и вообще все, что могло "съесть" кислород — от растворенных соединений в океане до вулканических газов — постепенно окислилось. Кислороду стало некуда деваться, и он начал накапливаться в атмосфере. Для большинства обитателей Земли того времени это стало катастрофой.
Кислород — агрессивный газ. Он разрушает органические молекулы, окисляет все, с чем соприкасается. Для анаэробных организмов, которые миллиарды лет царствовали на планете, он оказался смертельным ядом.
Ученые называют это "Великим кислородным событием", но по сути это было первое массовое вымирание в истории Земли — задолго до динозавров. Поэтому у этого события есть и другое, более честное название — "Кислородная катастрофа".
Выжили лишь те, кто спрятался в бескислородных нишах — глубоко в почве, на дне океана, внутри других организмов. Потомки существ, переживших "Кислородную катастрофу", живут там до сих пор.
А те, кто научился не просто терпеть кислород, но использовать его — получили невероятное преимущество. Кислородное дыхание дает в 18 раз больше энергии, чем анаэробный метаболизм. Энергия — это бесценное топливо для сложных организмов, включая нас с нашим "прожорливым" мозгом, на который в состоянии покоя приходится около 20% от всех энергозатрат организма.
Так отходы жизнедеятельности древних бактерий стали основой всей сложной жизни на планете.
Около 90% айсберга всегда находится под водой, над поверхностью которой возвышается лишь 1/10 его часть. Высота надводной части некоторых айсбергов может достигать 35 метров.
На дне западной части Тихого океана, к юго-востоку от Марианских островов, находится впадина глубиной почти 11 километров. Это Марианский желоб — самое глубокое место на Земле. Если погрузить туда Эверест, то над вершиной останется еще более двух километров воды.
Давление на дне такое, что любая подводная лодка схлопнется, как консервная банка под прессом: металл согнется, швы разойдутся, вода ворвется внутрь за секунды.
Но как появилась эта бездна? Почему именно здесь, а не в Атлантике или Индийском океане?
Столкновение гигантов
Земная кора не монолитная структура. Она состоит из гигантских плит, которые плавают на раскаленной мантии, как куски льда на воде. В ходе неторопливого движения плиты время от времени сталкиваются, расходятся, налезают друг на друга. Там, где они встречаются лоб в лоб — вырастают горы. Там, где расходятся — появляются океаны. А там, где одна плита подныривает под другую — образуются глубоководные желоба.
Марианский желоб — результат именно такого процесса. Тяжелая Тихоокеанская плита столкнулась с более легкой Филиппинской и начала уходить под нее вглубь планеты. Этот механизм геологи называют субдукцией.
Почему одна плита ныряет?
Тихоокеанская плита — древняя. Ей около 170-180 миллионов лет. За это время она остыла, уплотнилась, стала тяжелой. Филиппинская плита намного моложе — ей около 40-50 миллионов лет. Она легче, теплее, более плавучая.
Когда эти две плиты встретились — старая, тяжелая Тихоокеанская плита не смогла удержаться на поверхности и начала погружаться под молодую Филиппинскую. Там, где плита изгибается, образовался Марианский желоб, глубина которого, между прочим, непрерывно увеличивается на 3-4 сантиметра в год.
Примечательно, что при этом сама плита погрузилась уже на сотни километров. Там, в раскаленной мантии, она постепенно плавится, перерабатывается и становится частью земных недр. Это один из механизмов непрерывного самообновления коры нашей планеты.
Побочные эффекты
Сильное трение, сопровождающее погружение одной плиты под другую, порождает мощнейшие землетрясения. По этой причине Марианская зона — одна из самых сейсмически активных на планете.
А еще погружающаяся плита захватывает с собой океанскую воду через трещины. Вода попадает в раскаленную мантию и химически изменяет окружающие породы, которые начинают плавиться при более низкой температуре*.
*Когда вода попадает в мантию под огромным давлением, она встраивается в кристаллическую решетку минералов. Это меняет их химический состав — породы становятся гидратированными (насыщенными водой). Такие породы плавятся при более низкой температуре, чем сухие.
Так образуется магма, которая поднимается, а после прорывается на поверхность в виде вулканов.
Именно поэтому рядом с желобом — цепочка Марианских островов, имеющих вулканическое происхождение. Каждый остров — это верхушка подводного вулкана, представляющего собой побочный продукт формирования Марианского желоба.