Когда говорят о добыче золота, то обычно в голове возникает картинка, как люди намывают его в какой-нибудь реке. Но в современном мире картина сильно изменилась.
В феврале мы снимали на современном заводе по добыче золота. И сейчас хотим поделиться с вами тем, как это происходит.
Изначально фильм был на 2,5 часа. Но мы его немного сократили, а вторую технологическую цепочку о том, как из золота дураков добывают золото (здесь нет ошибки) мы решили выделить в отдельный фильм. Так что подписывайтесь, чтобы не пропустить.
Подповерхностные океаны на спутниках газовых гигантов — не редкость в нашей Солнечной системе. К Европе и Ганимеду у Юпитера, Энцеладу и Дионе у Сатурна и, возможно, Тритону у Нептуна теперь можно добавить еще одного кандидата — Мимас, спутник Сатурна.
Мимас — небольшой спутник Сатурна диаметром всего 396 километров, внешне напоминающий «Звезду Смерти» из киноэпопеи «Звездных войн» из-за огромного 140-километрового кратера Гершель. Поверхность сатурнианского спутника, испещренная множеством ударных образований, не давала ученым никаких намеков на существование жидкого океана под ледяной корой.
Однако данные миссии "Кассини" показали странные неравномерности в орбите этого маленького спутника. Такие аномалии могли быть вызваны двумя причинами:
Наличием каменного ядра очень необычной формы;
Присутствием жидкого подповерхностного океана.
Компьютерное моделирование, проведенное международной командой исследователей, указывает на второй вариант как наиболее вероятный. Первая гипотеза оказалась ошибочной — чтобы вызывать наблюдаемые орбитальные аномалии, ядро Мимаса должно было бы иметь форму блина, что физически крайне маловероятно.
Самый молодой океан Солнечной системы
"Мимас — небольшая луна, и ее сильно кратерированная поверхность не давала никаких намеков на скрытый океан под ней, — объясняет доктор Ник Купер, соавтор исследования из Лондонского университета королевы Марии. — Наше открытие добавляет Мимас в эксклюзивный клуб спутников с подповерхностными океанами, но с особым отличием: его океан удивительно молод, его возраст не превышает 25 миллионов лет".
В зависимости от используемой модели, возраст подповерхностного океана Мимаса может составлять от 2 до 25 миллионов лет. Для сравнения, подповерхностному океану юпитерианской Европы около 4,5 миллиарда лет — примерно столько же, сколько самой Солнечной системе.
Если модели верны, то океан Мимаса надежно изолирован от агрессивной среды космоса ледяным панцирем толщиной от 20 до 30 километров.
"Существование относительно недавно образовавшегося океана делает Мимас главным кандидатом для изучения учеными, исследующими происхождение жизни", — подчеркивает доктор Купер.
Подповерхностный океан Мимаса может подарить ученым уникальную возможность изучить, как быстро могут формироваться условия, потенциально пригодные для возникновения жизни. Если в таком молодом океане будут обнаружены хотя бы предбиотические соединения, то это может полностью изменить наше понимание скорости эволюционных процессов.
Наследие легендарной миссии "Кассини"
Это открытие стало возможным благодаря данным космического аппарата «Кассини» — результату международного сотрудничества NASA, Европейского и Итальянского космических агентств. Зонд провел в системе Сатурна 13 лет, детально изучая планету, ее кольца и многочисленные спутники. Данные, собранные за это время, продолжают приводить к значимым открытиям.
Миссия «Кассини» завершилась 15 сентября 2017 года, когда аппарат был преднамеренно направлен в атмосферу Сатурна, где сгорел, чтобы избежать возможного химического загрязнения потенциально обитаемых спутников, которое могло бы создать ложные биомаркеры при будущих исследованиях.
"Это была замечательная командная работа: коллеги из пяти разных учреждений и трех разных стран объединились под руководством доктора Валери Лэйни, чтобы раскрыть еще одну интересную и неожиданную особенность системы Сатурна", — резюмировал доктор Купер.
Корональные петли на Солнце — гигантские арки раскаленной плазмы, которые могут достигать высоты в сотни тысяч километров над поверхностью нашей звезды.
Эти структуры формируются вдоль линий магнитного поля и содержат вещество с температурой от одного до нескольких миллионов градусов Цельсия.
Самые крупные корональные петли способны вместить до 100 планет размером с Землю, а их основания часто расположены в солнечных пятнах.
Когда магнитные поля, поддерживающие эти петли, дестабилизируются, происходят корональные выбросы массы — явления, способные вызвать геомагнитные бури на Земле и нарушить работу спутников и электрических сетей.
Недавно мне написали из издательства «Питер» и предложили три научно-популярных книги на обзор. Я сразу же согласился, так как это очень интересно. Сразу же скажу, что это не реклама, обзоры я делаю бесплатно. Поэтому могу быть объективным и не будет конфликта интересов. Если мне будут писать из издательств, игровых студий или ещё откуда-нибудь с предложениями сделать обзор на произведения, которые они издали, — никогда не буду делать этого в рамках рекламы. Только честные и объективные обзоры! Если вы издатель и вас устраивает это условие, пишите! С радостью по мере сил посмотрю, и если будет интересно, сделаю материал в своём проекте.
А начну я с книги научно-популярного блогера, а точнее подкастера, Романа Юдаева «Звездануло: весело и доступно про проблемы современной физики и астрономии».
Книга небольшая: чуть больше двухсот страниц. Но это не недостаток. Ведь автор ведёт свой популярный подкаст и, наверное, к повествованию нужно относиться так же. Когда я прочитал начало, меня не покидало ощущение, что читаю не какую-нибудь научпоп-книгу про космос, где нужно ещё самому долго сидеть и думать, что же сказал автор. Особенно когда мало знаний. Это книга-рассказ. Скорее всего, автор, когда писал её, представлял, что записывает подкаст и именно разговаривает со слушателем/читателем. Это мне импонирует, так как я сам так пишу тексты. Выделяю несколько моментов, что обязательно хочу сказать, и пишу «от себя». Поэтому могу смело рекомендовать её детям и подросткам, которые либо начали изучать физику в школе, либо решили в более раннем возрасте прикоснуться к ней. Но её можно смело читать и взрослым, которым нужен хоть какой-то «вход» в мир научпопа и которые хотят начать познавать мир. Тут могу рассказать об одном недостатке книги. Да, есть маскот — гусь, который помогает читателю визуализировать то, о чём идёт рассказ, но иллюстраций в таком труде всё-таки мало. Наверное, можно было бы давать сноски на свой же подкаст (по выпускам) или на статьи в интернете, где больше про это рассказано. Ведь в чём плюс многих научпоп-роликов — это что всё визуализировано на экране. Роману Юдаеву в будущем пожелаю больше писать таких книг. Может, мы ещё увидим интересные книги от него. Ведь эта область безгранична, каждый год происходят новые открытия, которые завораживают.
Если вам интересны мои текстовые или видеообзоры, то подписывайтесь на меня на Вомбате! Постараюсь и дальше радовать вас интересным контентом. Буду очень рад подписке на мой YouTube-канал: https://www.youtube.com/@ivan_lutz
5 июля 2022 года космический аппарат NASA "Юнона" обратил свой взор на юпитерианский спутник Ио, находясь на расстоянии около 80 000 километров от его поверхности.
Воспользовавшись инфракрасным картографом JIRAM (Jovian Infrared Auroral Mapper), зонд получил инфракрасное изображение спутника, которое стало картой вулканической активности одного из его полушарий.
Чем ярче цвет на изображении — тем выше температура, зафиксированная прибором. Каждая яркая точка на поверхности Ио — это активный вулкан, извергающийся в момент наблюдения.
Ио — чемпион Солнечной системы по вулканической активности. На спутнике со средним диаметром всего 3 642 километра насчитывается свыше 400 действующих вулканов. Чем объясняется такая бурная вулканическая активность? Главная причина — мощнейшие приливные силы, возникающие из-за гравитационного воздействия Юпитера и соседних спутников.
Ио находится в 350 000 километрах от газового гиганта (для сравнения, Луна удалена от Земли на 384 400 километров, но Юпитер в 318 раз массивнее нашей планеты), так что Юпитер является источником чудовищных приливных сил. Кроме того, Ио оказался в "гравитационной ловушке" между Юпитером и другими крупными спутниками — Европой и Ганимедом. Их совместное гравитационное воздействие непрерывно "мнет" и "растягивает" Ио, разогревая его недра до экстремальных температур; поверхность спутника периодически поднимается и опускается на 100 метров!
В ходе наиболее интенсивных извержений, вулканы Ио могут "выстреливать" на высоту до 500 километров, отправляя в космическое пространство серу и диоксид серы. Из-за этой активности спутник постоянно "худеет" — по оценкам ученых, около тонны материала в секунду уходит в космическое пространство, большая часть которого захватывается магнитным полем Юпитера, формируя плазменный тор вокруг планеты.
Стоит отметить, что многие яркие точки на изображении представляют собой не просто вулканы, а целые лавовые озера или поля, некоторые из которых покрывают площадь в сотни квадратных километров.
Перед вами Хаос Конамара (лат. Conamara Chaos) — регион хаотического рельефа на поверхности Европы, ледяного спутника Юпитера. Это прямое доказательство того, что в относительно недавнем прошлом поверхность этого интригующего мира претерпела существенные изменения.
На изображениях видны блоки водяного льда неправильной формы, образовавшиеся в результате разлома и движения существующей ледяной коры.
Эти блоки смещались, вращались и даже наклонялись, частично погружаясь в подвижный материал, который представлял собой либо жидкую воду, либо "кашу" (шугу́) из воды и мелких обломков льда.
Особенно интересны молодые разломы, которые пересекают этот регион. Они свидетельствуют о том, что поверхность снова замерзла, превратившись в достаточно хрупкий лед. Этот циклический процесс таяния и замерзания подтверждает гипотезу о существовании подповерхностного океана на Европе.
Что привело к появлению Хаоса Конамара?
Небольшой астероид мог столкнуться с Европой и пробить ее ледяной панцирь, достигнув океана. Это временно растопило область воздействия, заставив фрагменты льда вращаться и смещаться. Учитывая, что средняя температура на поверхности составляет -180 градусов Цельсия, эта динамика продолжалась совсем недолго — вскоре место удара было окутано новым, но более хрупким слоем льда.
Ключевую роль в формировании Хаоса Конамара могли сыграть внутренние геологические процессы. Европа испытывает мощное приливное воздействие со стороны Юпитера и других галилеевых спутников (Ганимеда, Ио и Каллисто). Эти гравитационные силы вызывают значительные деформации и трение внутри спутника, что приводит к нагреву его недр. Такой приливный нагрев может вызывать подъем теплых потоков из океана к ледяной поверхности, локально истончая и разрушая ледяную кору. В местах, где лед становится тоньше, давление снизу может привести к прорыву воды или "теплого льда", создавая хаотичные области, подобные Конамара.
Ученые также предполагают возможность существования подледных гидротермальных источников на дне океана Европы, похожих на "черные курильщики" в земных океанах. Тепло от них может подниматься, разрушительно воздействуя на нижнюю поверхность ледяного панциря подобно механизму приливного воздействия со стороны газового гиганта.
"Изображение-франкенштейн" было создано путем объединения данных, полученных космическим аппаратом NASA "Галилео" в феврале и декабре 1997 года. Последние данные предоставили более детальный взгляд на некоторые участки этого загадочного региона.
Европа — одно из наиболее перспективных мест для поиска внеземной жизни в Солнечной системе. Гипотетический подповерхностный океан спутника, защищенный от радиации — и в целом агрессивной космической среды — ледяной корой, может содержать в два раза больше воды, чем все океаны Земли вместе взятые.
14 октября 2024 года к Европе отправился космический аппарат NASA Europa Clipper, который достигнет системы Юпитера в апреле 2030 года. Следовательно, в обозримом будущем у нас появятся снимки Хаоса Конамара беспрецедентной детализации. Трудно даже представить, какие удивительные открытия нас ждут.
Ох и подлецы Вы. Такое слово недели... Я же сам, считай пивной алкаш, потому тема меня заинтересовала. Ловите ещё.
Дело было так. Дэррил Гвинн (Канада, Австралия, Великобритании и США) и
Дэвид Ренц (Австралия и США) опубликовали статью "Жуки на бутылке",
Австралийский журнал энтомологии, 1983 г., февраль, №22, с. 79-80. В
статье ученые рассказали, о том, что самцы жуков вида Julodimorpha bakewelli(австралийский жук-древоточец) совершают попытки совокупления с
маленькими пузатыми 370 мл пивными бутылками "Stubbie".
Наблюдательный Дэррил Гвинн
Парни шли по обочине дороги в области Dongara Западной Австралии и
заметили несколько пивных бутылок с жуками, ползающими по стеклу. Был
проведен короткий эксперимент в котором 4 бутылки "Stubbie" поставили на
земле на открытом пространстве. Уже через 30 минут 2 бутылки привлекли
жуков. В общей сложности 6 мужских особей взобрались на "Stubbie".
Наблюдалась картина, когда жук был атакован несколькими муравьями
(Iridomyrmex discors), которые кусали мягкие части его гениталий,
выступающих для совокупления. В дальнейшем мертвый жук, покрытый
муравьями, оказался в нескольких сантиметрах от той самой бутылки.
Любовь зла.
Любитель пивных бутылок
Ученые заметили, что бутылки "Stubbie" цветом и пупырышками (ряды
регулярно расположенных, небольших бугорков вокруг основания бутылки)
напоминают самок жуков Julodimorpha bakewelli. Блестящий коричневый цвет
стекла похож на блестящей желто-коричневый цвет надкрылий самок,
пупырышки похожи на пупырышки на надкрыльях самки. "Цвет и отражение
бугорков на стекле бутылки предлагаются в качестве причин для
освобождения сексуального поведения". Специалисты подсовывали самцам
бутылки из под вина другого коричневого цвета, но они не заинтересовали
кавалеров.
Эти наблюдения, как справедливо отмечают биологи, подтверждают
прогнозы сексуальной теории выбора о том, что самцы видов с низкой
мужской родительской инвестицией должны быть не избирательными
относительно самок в процессе спаривания. "Кроме того, хищничество
муравьев может поддержать прогноз, что самцы должны принимать больше
рисков чем женщины в период спаривания. Наконец, комментарий должен быть
о том, что выброшенные пивные бутылки не только создают опасности для
окружающей среды, но и потенциально могут привести к большим помехам в
размножении некоторых видов насекомых".
За открытие, того факта, что определенный вид жука дружит с
определенного рода австралийской пивной бутылкой Дэррил Гвинн и Дэвид
Ренц удостоены Шнобелевской премии в области биологии за 2011 год. На
вручение награды Дэррил Гвинн и Дэвид Ренц приехали с пивом, которое
вручили организаторам. Тем не менее Гвинн заметил, что почти 30 лет они с
коллегой сидели у телефона и ожидали звонка от устроителей Шнобелевки.
Почему так долго?
Проблема вот в чем. В микрохирургии при проведении операций крайне важно предотвратить свертываемость крови. Иногда помогают пиявки. Однако, сытая пиявка совершенно бесполезно. Как же стимулировать аппетит у пиявок? Вопрос из вопросов.
Андерс Баерхейм и Хогне Сандвик из Университета города Бергена, Норвегия, опубликовали работу "Влияние эля, чеснока и сметаны на аппетит пиявок" в "Бритиш медикал джорнал", т.309, 24-31 декабря 1994 г., с.1689. Баерхейм Сандвик проделали лабораторные опыты: "Шесть пиявок были ненадолго погружены в два разных сорта пива ("Гиннесс стаут" и "Ханза бок")... перед тем, как посадить на руку одного из нас (Хогне Сандвику). Мы засекли время с того момента, когда пиявка коснулась кожи, и до того, как Сандвик почувствовал укус. Каждая пиявка три раза погружалась то в одну, то в другую жидкость в произвольном порядке".
Андерс Баерхейм
Получены значительные результаты.
Весьма и весьма.
"После погружения в пиво некоторые пиявки изменили стиль поведения:
изгибали туловище, теряли хватку или переворачивались на спину".
"Две пиявки были помещены на руку, смазанную чесноком. Они начали
извиваться и ползать, не принимая позицию для присасывания... Их
состояние ухудшалось. При помещении на обнаженную руку они пытались
приступить к еде, но не могли координировать процесс. Обе пиявки погибли
через два с половиной часа после контакта с чесноком. После этого по
этическим соображениям чеснок больше не применялся".
После контакта со сметаной пиявки активизировались. Если их помещали
в стеклянную мензурку, они "отчаянно присасывались к стенке сосуда
после того, как их снимали с руки". Находясь на руке, они присасывались
не быстрее тех пиявок, которые не контактировали со сметаной.
Хогне Сандвик
Выяснилось, что совершенно не известно, как вызвать аппетит у пиявок.
Лучше всего не чесноком и не сметаной. От пива тоже не всегда много
пользы. Андерс Баерхейм и Хогне Сандвик за подготовленный с большим
вкусом отчет "Влияние эля, чеснока и сметаны на аппетит пиявок" были
удостоены Шнобелевской премии в области биологии за 1996 год. Лауреаты
прислали видеокассету:
-Лабораторные животные редко получают благодарность за свои научные
достижения. Реакция пиявок на эту награду была предсказуема: они пришли в
восторг.
Награду принял Терье Корснес, норвежский почетный консул в Массачусетсе:
-Вполне понятно, что подобное революционное исследование не может остаться незамеченным.
Терье Корснес (почетный норвежский консул) достал из кармана пакет пластмассовых пиявок и разбросал их в зале.
Андерс Баерхейм и Хогне Сандвик пока единственные самовыдвиженцы, получившие Шнобелевскую премию.
Ультрагорячие юпитеры — экстремальный класс экзопланет, вращающихся вокруг своих звезд на очень малом расстоянии, — демонстрируют колоссальный перепад температур между полушариями.
На дневной стороне KELT-9 b, самой горячей из известных экзопланет данного класса, находящейся на расстоянии около 670 световых лет от Земли, температура достигает 4 600 K (примерно 4 327 градусов Цельсия) — достаточно высокая для присутствия атомарного железа и титана в атмосфере (за счет испарения металлов), что было подтверждено спектроскопическими наблюдениями.
При этом на ночной стороне, никогда не видящей родительскую звезду из-за приливной блокировки, температура может опускаться до -200°C. Такой экстремальный градиент температур создает чрезвычайно мощные ветры, переносящие тепло и материю между полушариями планеты.
Железные дожди в инопланетных атмосферах
В 2020 году международная команда астрономов, используя инструмент ESPRESSO на Очень Большом Телескопе (VLT) в Чили, наблюдала за экзопланетой WASP-76 b, которая находится на расстоянии около 637 световых лет от нас. В ходе наблюдений были обнаружены следы присутствия железа в атмосфере, а его наибольшая концентрация фиксировалась на границе между дневной и ночной сторонами.
Этот факт указывал на то, что железо испаряется на раскаленной дневной стороне планеты, переносится ветрами к более холодной ночной стороне, где конденсируется и выпадает в виде "железного дождя".
Как горячие юпитеры оказались так близко к своим звездам?
Существование гигантских газовых планет, обращающихся вокруг своих звезд на расстояниях* в разы меньше, чем расстояние от Солнца до Меркурия, долгое время озадачивало астрономов.
*Например, WASP-76 b находится почти в 12 раз ближе к своей звезде, чем Меркурий к нашему светилу.
Современные модели планетообразования показывают, что эти гиганты не могли сформироваться на своих текущих орбитах — там просто недостаточно материала для образования таких массивных объектов.
Сегодня ученые сходятся во мнении, что горячие юпитеры формируются далеко от своих звезд (как Юпитер и Сатурн в нашей системе), а затем мигрируют внутрь из-за гравитационных взаимодействий с протопланетным диском и/или другими планетами системы. Возможно, миграция такого рода связана с гравитационным возмущением, вызванным проходящей рядом другой звездой.
Почему миграция газовых гигантов Солнечной системы остановилась на безопасном расстоянии от Солнца — вопрос открытый.
Туманность NGC 6357 — одна из самых удивительных звездных фабрик нашей галактики, расположенная в созвездии Скорпиона, на расстоянии около 5 500 световых лет от Земли. Внутри нее формируются не отдельные звезды, а целые звездные скопления.
Недавние наблюдения с помощью космического телескопа NASA "Джеймс Уэбб" выявили, что в этой туманности рождаются преимущественно массивные звезды, в 10-20 раз тяжелее Солнца. Ученые предполагают, что за это ответственные уникальные турбулентные потоки газа, которые создают в NGC 6357 идеальные условия для формирования гигантов.
Особую научную ценность представляют недавние наблюдения звездообразования в NGC 6357 с помощью комплекса радиотелескопов ALMA. Ученым удалось зафиксировать несколько протозвездных дисков на разных стадиях формирования, что позволяет изучать эволюцию звездных систем в реальном времени. Некоторые из этих систем, вероятно, сформируют двойные звезды, вращающиеся вокруг общего центра масс.
Все крупные космические тела во Вселенной, которые мы наблюдаем — от планет до звезд — имеют сферическую форму. И чем массивнее объект, тем более идеальной становится эта сфера. Почему же природа так настойчиво выбирает именно эту форму? Давайте разберемся на примере планеты.
Итак, все дело в гравитации. Когда планета формируется, она начинает притягивать к себе все больше материи — пыль, газ, астероиды. С ростом массы усиливается и гравитационное поле. Сила тяжести всегда направлена к центру тела, стремясь придать ему максимально компактную форму. А самая компактная форма в природе — это сфера.
Почему планета не может быть кубической?
У куба есть углы, которые находятся дальше от центра массы, чем остальные части. Гравитация не позволит этому существовать — она будет "стягивать" углы к центру, пока планета не примет форму шара — самую устойчивую форму для массивных космических объектов.
Кроме того, кубическая форма создала бы огромные перепады давления и температуры. Углы куба испытывали бы колоссальное напряжение, что привело бы к их разрушению. В итоге планета все равно бы "схлопнулась" в шар.
Малые космические тела, такие как кометы, астероиды и небольшие спутники, часто имеют неправильную форму, потому что их масса слишком мала, чтобы гравитация могла "вылепить" из них сферу. Для сравнения: астероид Психея с диаметром около 226 километров имеет неправильную форму, в то время как Земля с диаметром 12 756 километров стремится к идеальной сфере.
Впрочем, даже планеты не являются безупречными шарами. Из-за вращения вокруг своей оси они слегка сплющиваются на полюсах и расширяются на экваторе (звезды, между прочим, тоже). Это называется экваториальным утолщением. Например, полярный радиус Земли на 21,38 километра короче экваториального.
Интересный факт: Мимас, 396-километровый спутник Сатурна, является самым маленьким известным космическим телом, обладающим сферической формой из-за собственной гравитации.
Недавнее исследование астрономов из Калифорнийского университета в Беркли показало, что самые массивные черные дыры в известной Вселенной остановили свой рост. Наблюдения за 32 квазарами с черными дырами массой более 10 миллиардов солнечных масс показали, что все они достигли этого предела примерно 1,5 миллиарда лет назад.
Ученые предполагают, что существует фундаментальный предел роста черных дыр, связанный с эффективностью аккреции материи или с истощением доступного для поглощения вещества в их галактиках. Это открытие помогает объяснить, почему мы не наблюдаем черные дыры с массами в 100 миллиардов солнечных масс.
Кинематограф и научная фантастика обожают изображать черные дыры как "космические пылесосы", безжалостно втягивающие все вокруг — от космических кораблей до планет и гигантских звезд.
Такие сцены выглядят эффектно и пугающе, но насколько они соответствуют реальности? К счастью, истинная физика черных дыр куда менее апокалиптична, но при этом гораздо интереснее.
Гравитационное поле
Черные дыры подчиняются тем же законам гравитации, что и любые другие объекты в нашей Вселенной. Их притяжение зависит от массы и расстояния — чем дальше вы находитесь, тем слабее их влияние. Никакой магической всепоглощающей силы у них нет.
Допустим, если бы наше Солнце внезапно превратилось в черную дыру, сохранив свою массу, то как бы изменилась организация Солнечной системы? Абсолютно никак! Все объекты продолжали бы вращаться по тем же орбитам, на том же расстоянии. Да, со временем климатические условия на Земле изменились бы в худшую сторону, но упорядоченность Солнечной системы осталась бы неизменной. Черная дыра с солнечной массой оказывает точно такое же гравитационное влияние на окружающее пространство, что и Солнце. Ни больше, ни меньше.
Галактика в безопасности
В центре нашей галактики Млечный Путь находится сверхмассивная черная дыра Стрелец А*, масса которой почти в 4,3 миллиона раз превышает массу Солнца. Звучит устрашающе? Но давайте посмотрим на цифры.
Диаметр Млечного Пути около 100 000 световых лет. Гравитационное влияние центральной черной дыры ощутимо лишь в радиусе нескольких световых лет от нее. Это как песчинка в центре футбольного стадиона — да, она там есть и взаимодействует с близлежащими песчинками, но на трибунах ее влияние уж точно никто не почувствует.
Звезды вблизи центра Галактики действительно вращаются вокруг черной дыры с огромными скоростями, испытывая ее чудовищное влияние. Например, астрономы давно ведут наблюдения за звездой S2, которая в момент максимального сближения со Стрельцом А* проходит на расстоянии около 120 а.е.* от сверхмассивной черной дыры — и ничего, избегает "засасывания"! Звезда продолжает свое уверенное движение по эллиптической орбите, как делала это миллионы или даже миллиарды лет.
*а.е. — астрономическая единица, среднее расстояние от Земли до Солнца, около 150 миллионов километров.
Более того, любая галактика — очень стабильная система, где все элементы удерживаются вместе благодаря темной материи и суммарной массе всех светил, обеспечивающих надежную гравитационную связь. На черную дыру в центре Млечного Пути — сколь бы грозной не выглядела ее масса на фоне Солнца — приходится менее 0,1% от общей массы Галактики. И Млечный Путь в этом плане не является исключением — это среднее значение для галактик в наблюдаемой Вселенной.
Так что спите спокойно — ни одна черная дыра не способна "проглотить" целую галактику. Законы физики надежно защищают нас от космических кошмаров, порожденных научной фантастикой. Черные дыры опасны только вблизи, а в целом же они ведут себя как обычные массивные объекты — притягивают ровно настолько, насколько позволяет их масса.
Синестезия — нейрологическое явление, при котором стимуляция одного сенсорного пути автоматически вызывает ощущения или восприятие в другом сенсорном канале. Люди с хромо-музыкальной синестезией буквально "видят" музыку в виде цветных узоров, причем с удивительной последовательностью.
Исследования с МРТ показывают, что мозг синестетов физически отличается от мозга людей без синестезии — у синестетов на 23% больше нервных связей между областями, отвечающими за разные сенсорные функции. То, что большинство считает метафорой ("яркий звук", "сладкий голос"), они воспринимают буквально.
Интересно, что среди художников и музыкантов синестезия встречается в семь раз чаще. Скрябин, Римский-Корсаков, Кандинский и Набоков были синестетами, возможно, именно это нейрологическое "переплетение" чувств питало их творчество.
Квантовая биология изучает, как квантовые эффекты проявляются в биологических системах. Одним из наиболее изучаемых примеров является фотосинтез, где квантовая когерентность может играть роль в эффективном переносе энергии от солнечного света к хлорофиллу.
Исследования показывают, что растения могут использовать квантовые эффекты для почти 100%-ной эффективности передачи энергии, что значительно превосходит наши текущие технологии солнечных батарей.
Уникальность квантовой биологии в том, что она предлагает новый взгляд на биологические процессы, показывая, что квантовая механика не ограничивается микромиром, а может объяснять некоторые из самых фундаментальных процессов жизни, открывая путь для создания сверхэффективных технологий, вдохновленных природой.
В ответ на пост. Естественно есть. Только это не совсем звёзды, как и гипотетические чёрные карлики.
Только вот как раз коричневые и есть, причём обнаружены и доказаны. А что это такое?
Нарисовал неизвестный художник, спёрто с nplus1.ru - ссылка в посте есть.
Да всё просто, представьте наш Юпитер, только раз в десять-двадцать жирнее. Да, гигант газовый, состоит в основном из водорода и гелия, но только "бессердечной суки" - гравитации ему не хватает, что бы сжать водород до начала термоядерной реакции. Потому оно вроде и не звезда. Но, в отличие от чёрного карлика внутри хватает "бурления" за счёт трения, что бы такой субзвёздный объект разогреть до температур от 300 К до 3000 К (э-э-э- К - это Кельвины, для Цельсия надо в уме прибавить 273). Т.е. они современными методами вполне себе обнаруживаются, имеют что-то вроде планет, но 3000 градусов с поверхности - маловато будет для обогрева спутник/планеты что бы там хоть что-то зародилось.
Что с ними делать - да ничего, просто изучать. Жизни такая система не даст, да и вообще толку никакого. Белый карлик хотя бы имеет достаточно накопленной энергии, что бы обогревать к-либо рядом, при условии, что становясь карликом он не выжег всё вокруг, будучи красным гигантом.
Представьте себе космос, настолько далекий во времени, что даже самые долгоживущие звезды погасли. В этой невообразимо далекой перспективе мы сталкиваемся с понятием черных карликов - финальной стадии эволюции солнцеподобных звезд. Но что это за объекты, и почему мы никогда их не видели?
История черного карлика начинается задолго до его рождения. Когда звезды малой или средней массы, подобные нашему Солнцу, исчерпывают запас ядерного топлива, они переживают драматическую трансформацию. Эти светила значительно расширяются, превращаясь в красных гигантов и увеличивая свой диаметр в сотни раз. Затем эти звезды сбрасывают внешние оболочки, оставляя после себя плотное, раскаленное ядро - белый карлик.
Белые карлики - это уже не звезды в привычном понимании. Они не генерируют энергию путем ядерного синтеза. Вместо этого они медленно остывают, излучая накопленное тепло в космос. Этот процесс похож на то, как остывает уголек в потухшем костре, только растянутый на миллиарды лет.
Путь к черному карлику
Со временем белые карлики становятся все холоднее и тусклее. Астрономы предполагают, что в какой-то момент их температура сравняется с температурой реликтового излучения - космического микроволнового фона, заполняющего всю Вселенную. Когда это произойдет, белый карлик перестанет излучать видимый свет и превратится в черного карлика - невидимый холодный объект, дрейфующий в космической тьме.
Интересно, что ни один черный карлик еще не был обнаружен. Почему? Ответ кроется во времени. Процесс остывания белого карлика до состояния черного карлика занимает невообразимо долгий период - десятки миллиардов лет. Это больше, чем возраст самой Вселенной, которой "всего" 13,8 миллиарда лет!
На пороге трансформации
Хотя мы еще не видели черных карликов, астрономы наблюдали очень холодные белые карлики. Эти объекты, вероятно, находятся на последних (относительно, конечно) этапах своей эволюции, приближаясь к финальному превращению в черных карликов. Исследование таких объектов дает нам представление о том, как может выглядеть этот процесс.
Взгляд в далекое будущее
Изучение жизненного цикла звезд, от их зарождения до гипотетического превращения в черных карликов, расширяет наше понимание Вселенной. Этот процесс демонстрирует, что даже такие долгоживущие объекты, как звезды, подвержены фундаментальным изменениям. Наблюдая за эволюцией светил, мы получаем представление о масштабах времени, значительно превосходящих историю человечества, и о непрерывных трансформациях, происходящих в космосе.
На расстоянии около 5 200 световых лет от Земли раскинулась величественная туманность Розетка (NGC 2237) — одна из самых впечатляющих звездных "фабрик" нашей Галактики. Здесь, в огромном облаке газа и пыли диаметром 130 световых лет, рождаются настоящие звездные гиганты.
Изображение было получено 12 апреля 2010 года космической обсерваторией Европейского космического агентства (ESA) "Гершель", и на нем запечатлен один из самых активных регионов звездообразования в туманности Розетка.
Наиболее яркие области на снимке — это своеобразные "коконы" из газа и пыли, где развиваются массивные протозвезды. Каждый такой зародыш эволюционирует в звезду, которая будет как минимум в десять раз массивнее нашего Солнца. В верхней части изображения (отмечена на снимке ниже) видны небольшие светящиеся пятна — это звездные зародыши меньшей массы, находящиеся на раннем этапе развития.
Судьба таких космических гигантов предопределена их массой. В отличие от солнцеподобных звезд, живущих миллиарды лет, эти титаны проживут "всего" несколько миллионов лет. Объясняется это просто: чем массивнее звезда, тем быстрее она расходует свое термоядерное топливо. Когда оно закончится, каждая из этих звезд встретит свой конец в грандиозном взрыве сверхновой.
Однако гибель этих звезд станет началом нового цикла звездообразования. Вспышки сверхновых обогатят окружающее пространство тяжелыми элементами и создадут ударные волны, которые сожмут соседние облака газа и пыли, запуская формирование следующего поколения звезд. Так, в бесконечном танце созидания и разрушения, Вселенная поддерживает вечный круговорот звездной жизни.
Колесо Телеги (ESO 350-40) — одна из самых впечатляющих галактик в наблюдаемой Вселенной. Эта удивительная космическая структура, напоминающая гигантское колесо со спицами, находится в созвездии Скульптора на расстоянии около 500 миллионов световых лет от Земли.
Своими размерами она превосходит наш Млечный Путь почти в полтора раза — ее диаметр достигает колоссальных 150 000 световых лет.
История этой линзовидной галактики не менее захватывающая, чем ее внешний вид.
Изначально Колесо Телеги была обычной спиральной галактикой, но примерно 200-300 миллионов лет назад произошло драматическое событие — небольшая галактика-спутник буквально пронзила Колесо Телеги насквозь.
Это столкновение породило мощнейшую гравитационную ударную волну, которая прокатилась по всей галактике. Двигаясь на колоссальной скорости, волна сжимала газ и пыль, запуская процесс взрывного звездообразования вокруг центральной части.
В центре ESO 350-40 расположено яркое ядро, наполненное раскаленной космической пылью. Вокруг него сформировалось характерное кольцо, содержащее несколько миллиардов молодых звезд.
Сейчас астрономы наблюдают удивительный процесс — галактика постепенно возвращается к своей первоначальной форме; ее характерные "спицы колеса" начинают трансформироваться в рукава.
Детали этого космического великолепия удалось рассмотреть благодаря космическому телескопу NASA "Джеймс Уэбб". Цветное изображение было обнародовано 2 августа 2022 года.
Глядя на ясное ночное небо, мы видим тысячи мерцающих точек, каждая из которых может быть солнцем для своих планет. И в нашей Галактике сотни миллиардов звезд, и у подавляющего большинства из них есть планетные системы. Но почему тогда мы до сих пор никого не встретили? Этот простой вопрос привел ученых к одной из самых интригующих загадок современности — гипотезе великого фильтра.
Наука говорит, что для появления разумной жизни нужно пройти множество важных этапов. Это как длинная лестница, где каждая ступенька – ключевое событие: появление первых живых клеток, развитие многоклеточных организмов, возникновение разума, создание технологий. Великий фильтр – это одна из этих ступеней, настолько крутая, что почти никому не удается ее преодолеть.
В чем суть этой гипотезы?
Нашей Вселенной примерно 13,8 миллиарда лет. За столь огромный промежуток времени могло появиться огромное количество развитых цивилизаций, а некоторые из них могли бы даже заселить значительную часть своей галактики, оставив заметные следы. Но мы не видим никаких признаков разумной жизни за пределами Земли. И тут возникает тревожный вопрос: где находится этот великий фильтр — позади нас или впереди?
Если фильтр уже пройден (например, это был сам факт появления сложной клеточной жизни), то мы преодолели самое трудное, и наши шансы на выживание довольно высоки. Но если фильтр ждет нас в будущем — например, это неспособность цивилизации справиться с собственными технологиями или природными катастрофами, — то картина становится куда менее оптимистичной.
Если фильтр в прошлом, он мог быть связан с невероятной сложностью появления жизни (подходящая температура, нужные химические элементы, правильная последовательность реакций – все это должно было совпасть в одном месте и в одно время). Это похоже на попытку собрать работающий компьютер, случайно перемешивая детали в коробке – шансы, что все сложится правильно, исчезающе малы.
Если же фильтр находится впереди, у него может быть несколько форм:
Самоуничтожение через войны или опасные технологии;
Истощение необходимых ресурсов раньше, чем цивилизация сможет покинуть свою планету;
Космические катастрофы — падения астероидов или комет, вспышки сверхновых и гиперновых звезд на относительно небольшом расстоянии;
Физические ограничения, делающие межзвездные путешествия практически невозможными (как синдром Кесслера, когда космический мусор запирает цивилизацию на планете с ограниченными ресурсами);
Биологические угрозы — пандемии, созданные природой или самой цивилизацией, против которых нет защиты;
"Ловушка развития" — когда цивилизация достигает комфортного уровня жизни и теряет стремление к дальнейшему развитию и космической экспансии;
Фундаментальные проблемы сознания — возможно, развитие искусственного интеллекта или изменение собственного разума приводит к непредсказуемым последствиям.
Гипотеза великого фильтра помогает понять, насколько хрупкой может быть цивилизация и как важно ее сохранить. Каждый технологический прорыв, каждое научное открытие – это шаг в неизвестность, который может либо приблизить нас к преодолению фильтра, либо стать той самой преградой, о которую разбиваются цивилизации.
И именно поэтому поиск внеземной жизни теперь становится чем-то большим, чем просто исследование космоса. Если мы найдем хотя бы простейшие формы жизни на других планетах, это может подсказать нам, где находится великий фильтр. А такое знание может оказаться решающим для выживания человечества.
Может быть, главный урок этой гипотезы в том, что наша цивилизация гораздо более уникальна и хрупка, чем мы привыкли думать. И чем лучше мы это понимаем, тем больше шансов успешно пройти все испытания на пути к звездам.