В небо было поднято 16 тысяч дронов
Устройства выстроились в огромную светящуюся фигуру, которая постепенно превращалась в различные образы.

Устройства выстроились в огромную светящуюся фигуру, которая постепенно превращалась в различные образы.

В 2006 году английский язык пополнился необычным глаголом — "to pluto" (в русском переводе — "оплутонить"). Американское диалектное общество (American Dialect Society) даже признало его "Словом года". Смысл простой: лишить статуса, обесценить то, что когда-то считалось важным и значимым.

Поверхность Плутона в естественных цветах «глазами» космического аппарата NASA «Новые горизонты» / © NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker
Глагол, как вы уже могли догадаться, напрямую связан с одним из самых громких событий в современной астрономии — переклассификацией Плутона из полноценной планеты в карликовую планету.
Плутон был открыт 18 февраля 1930 года 24-летним американским астрономом Клайдом Томбо. В тот исторический период человечество мало что знало об устройстве Солнечной системы, поэтому новую находку почти сразу наградили статусом девятой планеты. И Плутон удерживал это звание более 76 лет — до августа 2006 года, пока на Генеральной ассамблее Международного астрономического союза (IAU) его официально не перевели в категорию карликовых планет.
Это немного странно, но до 2006 года термин "планета" был скорее историческим, чем строго научным. Уточнение потребовалось после обнаружения множества объектов в поясе Койпера (по соседству с Плутоном). Кульминацией стало открытие Эриды в 2005 году — объекта, который, исходя из полученных данных, казался даже крупнее Плутона.
Во избежание хаоса (Солнечная система могла пополниться десятками новых планет), IAU ввел четкое определение планеты. Объект, чтобы получить этот статус, должен соответствовать трем критериям:
Орбита Плутона пролегает через пояс Койпера, где тысячи массивных ледяных тел. Плутон — один из многих объектов такого рода, и он не доминирует в этой области.

Закат на Плутоне, запечатленный зондом "Новые горизонты" / © NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Поэтому было решено, что объекты, не удовлетворяющие последнему критерию, отныне будут классифицироваться как карликовые планеты. Сейчас их официально пять: Церера, Плутон, Эрида, Хаумеа и Макемаке. Кроме того, есть еще четыре объекта такого рода, которые рассматриваются астрономами как карликовые планеты, но пока не получили официального признания от IAU: Седна, Квавар, Орк и Гун-гун.
А еще в поясе Койпера есть не менее четырех десятков других ледяных объектов-кандидатов, масса и размеры которых продолжают уточняться. По предварительным данным, многие из них достаточно массивны, чтобы пополнить список карликовых планет. И нет сомнений, что с появлением новых мощных телескопов число известных карликовых планет будет только расти.

© Dreamina/TheSpaceway
Решение вызвало (и вызывает до сих пор) бурную реакцию: от гнева и разочарования до мемов и шуток. Именно в этой буре родился глагол to pluto, ставший символом того, что наука непрерывно развивается. То, что вчера казалось незыблемым, завтра может быть пересмотрено — и это нормально.
Плутон, конечно, от наших манипуляций не стал меньше или хуже — он остался тем же далеким, загадочным миром на краю Солнечной системы с горами, разреженной атмосферой, пятью спутниками и, вероятно, даже с подповерхностным океаном.
На изображении — безымянная галактика, удаленная примерно на 5,7 миллиарда световых лет от нас. Этот кадр — результат объединения данных, полученных с помощью космической рентгеновской обсерватории NASA "Чандра" и наземного комплекса радиотелескопов ALMA (Чили).

Яркое пятно в центре представляет собой раскаленный газопылевой "кокон" вокруг сверхмассивной черной дыры. Темные зоны сверху и снизу — области холодного газа.
Обычно черные дыры рассматриваются как разрушители, но этот объект доказывает, что не все так однозначно. Мощные струи плазмы (джеты), вырывающиеся из окрестностей дыры, не разгоняют окружающую материю, а напротив — запускают производство холодного газа.
У некоторых возникнет вопрос:
"Как раскаленная струя плазмы может что-то охладить?"
На первый взгляд это действительно звучит иррационально. Это как пытаться заморозить воду огнеметом.
Но тут весь секрет в физике расширения. Джеты, двигаясь с огромной скоростью, выталкивают газовые облака подальше от черной дыры. Там газ начинает стремительно расширяться, теряя энергию и... остывая. Именно этот холодный газ — ключевой компонент для рождения новых звезд.
Все это формирует замкнутый цикл: черная дыра стимулирует звездообразование, чтобы потом "полакомиться" частью новых светил. В будущем, испуская новые джеты, она станет причиной появления следующего поколения звезд. И все повторится вновь, пока запасы окружающего газа не подойдут к концу — лишь тогда черная дыра уснет.
Могут ли гипотетические внеземные микроорганизмы представлять угрозу для человека? Этот вопрос десятилетиями будоражил умы ученых и фантастов. Особенно последних, которым только дай какую-нибудь околонаучную зацепку и они настругают однотипные романы, выдавая их за твердую научную фантастику.

Ответ же кроется в фундаментальных различиях биохимии земной и потенциально чужой жизни. Поэтому краткий ответ на вопрос "опасны ли инопланетные микроорганизмы для нас" — скорее всего, нет.
Земные патогены — продукт миллиардов лет совместной эволюции с нашими клетками. За столь колоссальный промежуток времени они научились обманывать иммунитет, проникать в рецепторы и максимально эффективно использовать наши ресурсы.
Инопланетный микроорганизм, с высокой вероятностью, будет иметь иную биохимическую основу. Его белки, ДНК (или ее аналог) и метаболические пути могут быть банально несовместимы с нашими. Проще говоря, наш организм для такого существа — совершенно незнакомая и негостеприимная среда, а он для нас — биологически инертный объект.
Для того чтобы внеземные микробы или вирусы представляли угрозу для земной жизни, они должны быть полной копией земных аналогов и миллиарды лет эволюционировать в абсолютно идентичных условиях, включая точно такую же флору и фауну. Вероятность такого развития событий статистически ничтожна.
Однако существует гипотетический риск, описанный еще Карлом Саганом. Если инопланетная простейшая жизнь будет основана, например, на D-аминокислотах (зеркальных версиях наших L-аминокислот), то наш иммунитет может проигнорировать акт вторжения в организм. Такие микроорганизмы, оказавшись внутри тела, не вызовут иммунного ответа — не будет ни воспаления, ни температуры. Благодаря этому они смогут бесконтрольно размножаться в нашем теле, используя его как питательную среду.

В таком случае болезнь развивалась бы не как острая инфекция, а как тихое, медленное угасание. Симптомы напоминали бы синдром хронической усталости, наблюдалось бы необъяснимое истощение, потеря веса, когнитивные нарушения. Причина — не токсины, а механическое нарушение работы органов из-за растущей биомассы инородной жизни, закупорки капилляров и сдавливания нервов.
Сценарий "невидимой эпидемии" маловероятен, но именно он лег в основу ранних протоколов планетарного карантина NASA (поэтому первых астронавтов, побывавших на Луне, отправляли на трехнедельный карантин).

Вывод, к которому пришла современная наука, успокаивает: самая надежная защита от внеземных патогенов — не скафандры или карантинные зоны, а фундаментальные биохимические различия, делающие нас неинтересными друг для друга.
На протяжении столетий антарктический гигантский кальмар был легендой морских глубин, этаким мифическим кракеном, о котором рассказывали бывалые моряки, но которого никто не видел живым. И вот весной 2025 года случилось это: титан океанских пучин был впервые в истории запечатлен в своей естественной среде обитания. Правда, в кадр попал лишь его детеныш, но от этого открытие не становится менее сенсационным.

В марте 2025 года научно-исследовательское судно Океанографического института имени Шмидта (США) бороздило воды вблизи Южных Сандвичевых островов. В рамках исследования Южной Атлантики в океан был погружен непилотируемый глубоководный аппарат с камерами на борту, которые транслировали видео в прямом эфире. На глубине 600 метров произошло невероятное — один из зрителей онлайн-трансляции написал в чате, чтобы ученые обратили внимание на существо, которое напоминает легендарного антарктического гигантского кальмара.
Исследователи немедленно отправили видеозапись высокого разрешения независимым экспертам по головоногим моллюскам. Вердикт был единогласным: характерные крючки вдоль присосок на восьми щупальцах не оставляли сомнений — это действительно был антарктический гигантский кальмар (лат. Mesonychoteuthis hamiltoni).

Антарктический гигантский кальмар — самое крупное из ныне живущих беспозвоночных животных на Земле. Взрослые особи вырастают до 12 метров (с щупальцами), а масса их тела может достигать 700 килограммов. Их массивные щупальца оснащены острыми крючками, способными впиваться в двухметровую добычу и удерживать ее мертвой хваткой.
Длина тела детеныша, попавшего в кадр, составляла всего 30 сантиметров, но даже эта малютка представляет собой научную сенсацию.
Несмотря на то, что о встречах с антарктическими гигантскими кальмарами моряки рассказывали веками, вид официально был описан зоологами лишь в 1925 году — исключительно по останкам из желудков китов.
В 1981 году южнополярные рыбаки случайно вытащили сетями мертвого антарктического гигантского кальмара. Это была неполовозрелая четырехметровая самка — первый целый экземпляр, попавший в руки ученых.

За следующие десятилетия в сети рыбаков лишь изредка попадались мертвые туши или фрагменты этих гигантов. Еще реже их останки выбрасывало на побережье. Казалось, что увидеть живого антарктического гигантского кальмара в его родной стихии просто невозможно. Но 2025 год все изменил.
«Удивительно, что каждый раз, когда мы погружаемся в морские глубины, мы находим что-то новое и захватывающее», — прокомментировала открытие доктор Джотика Вирмани из Океанографического института имени Шмидта.
Стивен О'Ши, бывший сотрудник Оклендского технологического университета (Новая Зеландия), придумавший современное название "антарктический гигантский кальмар" в начале 2000-х, когда-то называл этих животных "грозными символами морских глубин". Однако теперь, после изучения новых кадров, он изменил свое мнение:

"Это скорее гигантские желеобразные существа, медленно дрейфующие в толще придонныхвод".
Жизнь антарктических гигантских кальмаров остается не менее гигантской загадкой. Ученые не знают, являются ли они социальными существами или одиночками, как охотятся и как долго могут обходиться без пищи. Совершенно неизвестно, как и когда они размножаются, как долго живут и насколько глубоко способны нырять.
Но человечество сделало первый серьезный шаг в изучении этих удивительных созданий природы. Каждое новое наблюдение антарктических гигантских кальмаров в естественной среде будет приближать нас к разгадке еще одной тайны нашей планеты.
Перед вами один из первых в истории цветных снимков с поверхности другой планеты. Изображение было получено марсианским посадочным модулем NASA "Викинг-1", который 20 июля 1976 года совершил мягкую посадку в районе Равнины Хриса (лат. Chryse Planitia), став первым успешным стационарным "землянином" на Красной планете.

Это изображение представляет собой результат цифровой реставрации данных, полученных почти полвека назад. Качество было улучшено, но геометрия и детали остались нетронутыми. Оригинальный кадр был передан на Землю 21 августа 1976 года, примерно за 15 минут до захода Солнца.
Лишь недавно стало ясно, насколько же интересным оказалось место, выбранное для посадки "Викинг-1". Исследование, опубликованное в 2022 году, показало, что модуль примарсианился у края гигантского 110-километрового кратера, возраст которого оценивается примерно в 3,4 миллиарда лет. Этот кратер, по расчетам планетологов, образовался после падения крупного астероида, который стал причиной марсианского мегацунами — волны высотой в десятки метров, прокатившиеся по древнему океану. Камни, попавшие в кадр "Викинга-1", могут быть безмолвными свидетелями этой древней катастрофы.
Именно поэтому сегодня Равнина Хриса и прилегающие к ней регионы — одни из наиболее перспективных мест для поиска возможных следов жизни на Марсе.

Если когда-то на Красной планете действительно существовал океан (данных в пользу этого предостаточно), его береговая линия, перекроенная ударами астероидов и мегацунами, должна была сохранить и осадочные породы, и возможные биосигнатуры.
На Земле такие места — дельты рек, древние побережья, участки, пережившие цунами — часто оказываются кладовыми ископаемой жизни. Марс может подчиняться тем же правилам, и будущие миссии это обязательно проверят.
Перринский регион (лат. Perrine Regio) — обширная область в северном полярном регионе Ганимеда, крупнейшего спутника Юпитера и Солнечной системы в целом. Средний диаметр этого небесного тела составляет 5 268 километров, что делает его примерно на 389 километров больше Меркурия (средний диаметр 4 879 километров), который является полноценной планетой.

Изображение было получено 27 декабря 2000 года космическим аппаратом NASA "Галилео", и его можно рассматривать как косвенное доказательство того, что в некоторых местах кора спутника достаточно тонка, чтобы подповерхностный океан взаимодействовал с космосом.
Обратите внимание на яркие белые пятна. Это залежи чистейшего водяного льда, отражающие большую часть падающего солнечного света. Присутствие большого количества льда в кратерах можно объяснить тем, что его доставило ударное тело, или же тем, что часть ледяной коры была расплавлена, обновив материал под слоем пыли. Но лед в разломах, вероятно, связан с океаном.
Приливные силы со стороны газового гиганта непрерывно сжимают и растягивают спутник, что приводит к появлению небольших трещин и крупных разломов на его поверхности. Там, где кора заметно тоньше — формируются наиболее глубокие трещины, через которые внутреннее содержимое Ганимеда получает возможность вырваться наружу. Это как если взять пластиковую бутылку без крышки, наполнить ее водой, а после резко сдавить.


Достигая поверхности, вода тут же замерзает, формируя те белоснежные залежи, что попали в кадр.

Для проверки гипотезы нужны дополнительные данные, которые будут получены во второй половине 2031 года, когда к работе приступит зонд Европейского космического агентства (ESA) JUICE. Запуск аппарата, созданного для изучения ледяных спутников Юпитера — Европы, Ганимеда и Каллисто — состоялся 14 апреля 2023 года.
Если информация подтвердится, то Ганимед получит статус потенциального обитаемого мира.
Черные дыры — одни из самых экстремальных и загадочных объектов во Вселенной. Их гравитация настолько сильна, что ничто — даже свет — не может вырваться из них. Но почему? Давайте разберемся в физических причинах этого феномена.

Гравитационное притяжение черной дыры огромно, но не бесконечно. Его интенсивность зависит от массы черной дыры. Однако не столько сама гравитация, сколько ее влияние на пространство-время создает уникальные свойства черных дыр. Чтобы понять это, нам нужно разобраться с ключевым понятием — скоростью убегания.
Скорость убегания (вторая космическая скорость) — это минимальная скорость, которую нужно развить объекту, чтобы преодолеть гравитационное притяжение того или иного тела и улететь восвояси. Для обычных небесных тел, вроде планет или звезд, эта скорость вполне достижима. Но в случае с черными дырами ситуация кардинально меняется.
Например, для Земли скорость убегания составляет 11,2 км/с, для Солнца - 617,7 км/с.
У черной дыры есть внешняя граница, называемая горизонтом событий. На этой границе скорость убегания в точности равна скорости света (299 792 458 м/с). За горизонтом событий, внутри черной дыры, скорость убегания превышает скорость света. Это превышение увеличивается по мере приближения к центру черной дыры.

Все дело в колоссальной плотности черных дыр. Например, если Солнце сжать до сферы диаметром в 2,95 км, то оно станет черной дырой, а его гравитационное поле станет экстремально сильным.
Скорость убегания рассчитывается по формуле: v = √(2GM/r), где G - гравитационная постоянная (6,6743 × 10^-11 Н·м²/кг²), M - масса объекта, r - расстояние от центра.
Давай рассмотрим это на примере сверхмассивной черной дыры в центре нашей Галактики — Стрелец A*:
Подставим значения в формулу:

Из этого следует, что для того, чтобы покинуть черную дыру, объекту нужно было бы разогнаться до скорости, превышающей скорость света. Согласно Специальной теории относительности, ничто, обладающее массой, не может двигаться со скоростью, равной или превышающей скорость света. Это фундаментальное ограничение нашей Вселенной. Более того, черная дыра настолько искривляет пространство-время, что внутри горизонта событий все траектории неизбежно ведут к центру черной дыры, делая побег принципиально невозможным.
Таким образом, экстремальная гравитация и геометрия пространства-времени создают идеальную космическую ловушку, из которой нет выхода для всего, что подчиняется известным законам физики.
Перед вами ледяная поверхность 504-километрового спутника Сатурна Энцелада, запечатленная 28 октября 2015 года космическим аппаратом NASA "Кассини". В момент получения этой фотографии зонд находился всего в 48 километрах от "морщинистой" поверхности загадочного мира, обладающего потенциально обитаемым подповерхностным океаном.

В 2005 году, анализируя данные "Кассини", ученые установили, что гейзеры на южном полюсе Энцелада являются источником ледяных крупиц и газа, вырывающихся из недр сатурнианской луны со скоростью более 400 метров в секунду. Примечательно, что эти извержения непрерывны — снижается лишь их интенсивность. Из-за этого вокруг Энцелада сформировался огромный, но чрезвычайно разреженный ореол мелкой ледяной пыли, часть которой идет на поддержание существования E-кольца Сатурна.
Львиная же доля этих ледяных крупиц постепенно оседает на поверхность спутника, обеспечивая ее медленное, но непрерывное обновление. Благодаря этому Энцелад обладает самым высоким альбедо (отражательной способностью) среди всех тел в Солнечной системе, отражая от 90% до 99% падающего солнечного света.

Спектральный анализ выбрасываемого льда и газа позволил выявить в гейзерах Энцелада не только воду, но и молекулярный водород, диоксид углерода, сложные органические соединения и соли — все, что нужно для зарождения и поддержания жизни. Кроме того, это подтвердило гипотезу наличия разогретого каменного ядра, с которым океан активно взаимодействует. Следовательно, Энцелад не лишен внутренней энергии, без которой невозможно существование жизни.
Планетологи и астробиологи считают, что в океане Энцелада могут процветать хемосинтетические экосистемы, подобные земным сообществам у гидротермальных источников в глубинах Мирового океана.

Будущие миссии будут включать посадку на поверхность Энцелада и, вероятно, проникновение в его океан через разломы на южном полюсе, из которых бьют гейзеры.
Сегодня Энцелад — самое перспективное место для поиска внеземной жизни в пределах Солнечной системы.
Человечество не устаёт вглядываться, вслушиваться и внюхиваться в космические просторы, надеясь найти братьев по разуму. Нас могут устроить любые признаки существования инопланетных цивилизаций: звуки, радиосигналы или что-то ещё. Однако никаких надёжных данных мы так и не получаем. И некоторых учёных это уже начинает злить.
Поэтому неудивительно, что кто-то с отчаяния предложил очередную гипотезу, объясняющую, почему мы не видим инопланетян. Она говорит, что разумные существа на других планетах существуют, и они даже технологически развиты лучше нас, но... им в какой-то момент наскучило изучать космос. А также у них пропало желание продолжать технологический прогресс.

Почему такая абсурдная гипотеза вообще появилась? Ну, не такая уж и абсурдная. Наше человечество, будучи не настолько развитым, как гипотетические инопланетяне, уже достаточно изучило космические просторы и обнаружило, что там нет ничего супер-интересного и романтического. Холодная пустота, куски твёрдых пород, скопления газов и плазмы. Какой-то живой интерес пока что представляет лишь Марс - одна из ближайших к нам планет; но и он разочаровал любителей космической романтики, ведь даже загадочный «марсианский Сфинкс» на поверку оказался просто большим холмом естественного происхождения.

Вот и Робин Корбет, астрофизик NASA, предполагает, что инопланетяне, имея чуть более высокий уровень технического развития, чем мы, ещё лучше изучили космос и лучше поняли, что искать там особо нечего. Дальнейшее исследование Вселенной оказалось для них слишком дорогим, сложным и бессмысленным.
Конечно, не все учёные согласны с Корбетом. Другие исследователи говорят, что он просто распространяет своё разочарование в космосе на всех остальных. И действительно, скепсис по отношению к космической теме разделяют далеко не все: многих Вселенная по-прежнему привлекает и вдохновляет, даже несмотря на то, что «зелёные человечки» и «инопланетные сфинксы» оказались вымыслом.

А вот моя статья об одном очень интересном эксперименте над нейросетью:
Иногда космос смотрит на нас в ответ... или, по крайней мере, создает такое впечатление. На инфракрасном изображении, представленном ниже, видны два ярких голубых "глаза", а вокруг них — искрящаяся красно-розовая "карнавальная маска".

Столь необычная структура — результат тесного взаимодействия двух галактик, каталогизированных под индексами NGC 2207 и IC 2163. "Глаза" на изображении — свечение центральных областей галактик, в ядрах которых сосредоточены миллиарды звезд, и в инфракрасном диапазоне они проявляются как два мощных светящихся пятна.
Красно-розовая "маска" — искаженные спиральные рукава галактик, насыщенные межзвездной пылью. В оптическом диапазоне пыль обычно скрывает детали, а в инфракрасном, наоборот, подчеркивает многие из них.
Сами галактики находятся на расстоянии около 140 миллионов световых лет от нас, а их "свидание", начавшееся примерно 40 миллионов лет назад, далеко от завершения: гигантские звездные системы продолжают перетягивать "гравитационный канат", искажая спиральные рукава и буквально воруя друг у друга газ и звезды.
Численное моделирование столкновения NGC 2207 и IC 2163 показывает, что примерно через миллиард лет система превратится в эллиптическую галактику или массивную дисковую без выраженных спиральных рукавов.
Обратите внимание на яркие "узлы" в рукавах, отмеченные на изображении ниже:

Это очаги наиболее интенсивного звездообразования, вспышка которого вызвана столкновением галактик. Там обитают очень молодые, горячие и пока еще нестабильные светила, недавно прошедшие стадию рождения из плотных газопылевых облаков. Жесткое излучение этих звезд нагревает окружающую пыль, заставляя ее сиять в инфракрасном диапазоне.
Это изображение — не просто космическая "красота ради красоты". Благодаря таким наблюдениям астрономы изучают, как гравитационные столкновения галактик запускают вспышки звездообразования, как перераспределяются газ и пыль, и в конечном счете — как меняется сама структура галактик в ходе их эволюции.
Изображение было получено 26 апреля 2006 года с помощью космического телескопа NASA "Спитцер".
На изображении ниже продемонстрированы два небольших участка на поверхности Каллисто, ледяного спутника Юпитера со средним диаметром 4 821 километр. Оба этих места примыкают к огромному ударному бассейну Асгард (лат. Asgard), и этот факт объясняет природу столь специфических вертикальных образований.

Многочисленные шпили, попавшие в кадр космического аппарата NASA "Галилео" в мае 2001 года, имеют высоту от 80 до 100 метров. Они состоят преимущественно из водяного льда, покрытого относительно тонким слоем темной пыли. Весь этот лед был извлечен из недр юпитерианского спутника во время его столкновения с массивным небесным телом, произошедшим миллиарды лет назад. Это событие породило Асгард и уникальные для Солнечной системы шпили, которые представляют особый научный интерес.
Я не ошибся, говоря о том, что возраст шпилей составляет несколько миллиардов лет. Дело в том, что спутник Каллисто обладает самой старой поверхностью из всех известных тел в Солнечной системе, а если быть точнее, то она не претерпевала существенных изменений как минимум 3,5 миллиарда лет.

Кроме того, на Каллисто есть регионы, которые остаются практически нетронутыми более четырех миллиардов лет (для сравнения: поверхность Ио, вулканического спутника Юпитера, обновляется со скоростью около сантиметра в год). И это при том, что возраст Солнечной системы составляет примерно 4,6 миллиарда лет. Каллисто дает подсказки по поводу того, насколько быстро сформировались планеты нашей системы, включая Юпитер, и их спутники.
По мере разрушения льда пыль сползает и скапливается в низинах. Однажды, когда пройдут еще миллиарды лет, шпили разрушатся полностью, и вместо них останутся невысокие пылевые холмы.

Примечательно, что Каллисто может обладать подповерхностным океаном, но даже если это и так, то он залегает настолько глубоко, что добраться до него не представляется возможным. Может ли этот океан быть обитаемым? Это крайне маловероятно, так как он не имеет связи с поверхностью, так что его химия крайне скудна.
Наибольший научный интерес, как я сказал ранее, представляют шпили. Если бы мы организовали миссию по их бурению, сбору образцов льда с разной глубины, а после доставили бы их на Землю, то у нас появилась бы бесценная информация о рассвете Солнечной системы и о том долгом и сложном эволюционном пути, что она прошла.
Геонейтрино — это нейтрино и антинейтрино, которые рождаются в результате радиоактивного распада элементов в недрах нашей планеты. Большинство из них — это электронные антинейтрино, возникающие при распаде долгоживущих изотопов урана-238, тория-232 и калия-40.

Сами по себе нейтрино — это фундаментальные частицы, настоящие "призраки" Вселенной. Они не имеют электрического заряда, их масса почти нулевая, и они пронизывают все вокруг триллионами каждую секунду, ПРАКТИЧЕСКИ ни с чем не сталкиваясь.
Создаваемые по всему миру нейтринные детекторы позволяют "ловить" эти частицы. Поскольку геонейтрино беспрепятственно проходят через толщу Земли, они являются уникальным прямым источником информации о процессах, протекающих в ее глубинах, куда невозможно проникнуть физически. Их изучение помогает определить, какая доля внутреннего тепла Земли (а его выделяется около 47 Тераватт) генерируется радиоактивным распадом, а также оценить количество и распределение соответствующих элементов. Эти данные критически важны для понимания геодинамики и тепловой эволюции нашей планеты.
Эти "призрачные" частицы служат проводниками в недоступные иным способом места. Помимо геонейтрино, существуют, например, солнечные нейтрино, которые позволяют заглянуть прямо в ядро нашего Солнца и изучать протекающие там термоядерные реакции.
Самый продвинутый на сегодняшний день детектор нейтрино — Jiangmen Underground Neutrino Observatory (JUNO) в Южном Китае.

Его чувствительность настолько высока, что всего за 59 дней работы он провел измерения ключевых параметров нейтрино с точностью, на достижение которой в рамках предыдущих экспериментов потребовалось почти полвека!
Туманность NGC 6357 — одна из самых удивительных звездных фабрик нашей галактики, расположенная в созвездии Скорпиона, на расстоянии около 5 500 световых лет от Земли. Внутри нее формируются не отдельные звезды, а целые звездные скопления.

Недавние наблюдения с помощью космического телескопа NASA "Джеймс Уэбб" выявили, что в этой туманности рождаются преимущественно массивные звезды, в 10-20 раз тяжелее Солнца. Ученые предполагают, что за это ответственные уникальные турбулентные потоки газа, которые создают в NGC 6357 идеальные условия для формирования гигантов.

Особую научную ценность представляют недавние наблюдения звездообразования в NGC 6357 с помощью комплекса радиотелескопов ALMA. Ученым удалось зафиксировать несколько протозвездных дисков на разных стадиях формирования, что позволяет изучать эволюцию звездных систем в "реальном времени". Некоторые из этих систем, вероятно, сформируют двойные звезды, вращающиеся вокруг общего центра масс.
2 февраля 2005 года орбитальный аппарат Европейского космического агентства (ESA) "Марс-экспресс" передал на Землю потрясающий снимок: кратер Лаут, расположенный недалеко от северного полюса Красной планеты, предстал во всей красе. В центре оранжево-коричневого марсианского ландшафта — ослепительно белое пятно водяного льда.

Средний диаметр ударного образования составляет 39 километров, а его глубина достигает полутора километров. Часть дна кратера покрыта отложением водяного льда, который не тает круглый год.
Большинство людей уверены: весь лед на Марсе сосредоточен на полюсах. Это не совсем так.
Да, полярные шапки — самые крупные ледяные массивы планеты, которые с Земли можно наблюдать даже в небольшой телескоп. Но лед встречается и в других местах — правда, при определенных условиях. Главное из них — постоянная затененность.
Кратер Лаут — один из немногих примеров стабильного присутствия водяного льда за полярными регионами. Его расположение и глубина создают идеальные условия: солнечные лучи почти не достигают дна, так что температура там остается низкой на протяжении всего марсианского года.
На Марсе крайне низкое атмосферное давление — около 0,6% от земного. В таких условиях вода не может существовать в жидком виде на поверхности: она либо замерзает, либо сублимирует — превращается в пар, минуя жидкую фазу.

Поэтому для сохранения льда нужна постоянная низкая температура. Если дно кратера освещено Солнцем — лед быстро испарится. Но в глубоких тенистых ударных структурах, подобных Лауту, температура никогда не перешагивает через критическую отметку. Немаловажный вклад в обеспечение низкой температуры и сохранности ледяного покрова вносит близость к северному полюсу — здесь холоднее, чем в экваториальных широтах.
Анализ данных, полученных с помощью "Марс-экспресс" и NASA MRO (еще один орбитальный аппарат), показал, что лед в кратере Лаут относительно чистый. Это важно. Марсианский грунт содержит перхлораты — агрессивные химические соединения, опасные для человека. Поэтому лед, смешанный с грунтом или добытый из-под поверхности, будет требовать сложной очистки. А вот чистый лед из кратеров — готовый ресурс.
Вода будет нужна марсианским колониям для всего: питье, гигиена, выращивание растений, производство кислорода и даже ракетного топлива. Метод электролиза позволяет расщепить воду на водород и кислород — оба компонента пригодны для двигателей.

Кратер Лаут и подобные ему природные образования, заполненные обильными запасами чистого водяного льда, могут стать стратегическими точками для возведения первых баз на Марсе.
Космический аппарат "Марс-экспресс", запуск которого состоялся 2 июня 2003 года, продолжает работать. Его бортовые инструменты позволили создать детальные карты поверхности, изучить разреженную атмосферу и обнаружить следы древних водоемов.
Кратер Лаут — лишь одна из тысяч удивительных находок, которые помогают нам понять прошлое Марса и подготовиться к формированию его будущего.
Всего 20 лет назад идея, что где-то во Вселенной существуют алмазы диаметром в тысячи километров, воспринималась научным сообществом как фантастика. Но сегодня это доказанный факт: некоторые белые карлики действительно способны превращать свои "внутренности" в гигантские кристаллы углерода — самые большие "бриллианты" во Вселенной.

Белый карлик — это то, во что в конце жизненного цикла превращается звезда небольшой или средней массы, когда запасы ее "топлива" для продолжения термоядерных реакций заканчиваются. Светило сбрасывает оболочки, и на его месте остается сверхплотное ядро размером с Землю, но с массой до 1,44 солнечных.
Этот звездный "огарок" постепенно остывает, и через миллиарды лет начинается самое интересное.
Под чудовищным давлением в миллиарды атмосфер углерод в ядре начинает кристаллизоваться. Атомы выстраиваются в идеальную кубическую решетку, почти идентичную алмазной. В итоге внутри белого карлика вырастает единый кристалл колоссальной массы.
Первый объект такого рода был найден в 2004 году.
Белый карлик BPM 37093 в созвездии Центавра, удаленный примерно на 50 световых лет от Земли, получил неофициальное прозвище "Люси" — в честь песни The Beatles "Lucy in the Sky with Diamonds". С помощью астросейсмологии (анализ пульсаций звезд для изучения их внутренней структуры), команда ученых из Гарвард-Смитсоновского центра астрофизики выяснила, что около 90% массы Люси уже закристаллизовалось. Диаметр алмазного ядра — около 9 000 километров, а его масса — примерно 10³¹ кг (в 1,1 раза больше массы Солнца).

Примечательно, что в процессе перестройки углерода высвобождается скрытая теплота фазового перехода. Это отсрочивает охлаждение белого карлика на 2-4 миллиарда лет. Выходит, что кристаллизация — это еще и природный "обогреватель", который продлевает жизнь угасающей звезды.
С тех пор было обнаружено нескольких десятков кандидатов с кристаллизованными ядрами. Данные, полученные с помощью космического телескопа ESA Gaia и наземной обсерватории Gemini показывают, что примерно каждый десятый белый карлик в определенном диапазоне масс и возраста проходит стадию "алмазного сердца".
Прямо сейчас во Вселенной вращается бесчисленное множество гигантских "алмазов", которые будут сиять еще миллиарды лет после того, как погибнет Солнечная система.
10 марта 2023 года орбитальный аппарат "Аль-Амаль" (в переводе — "Надежда"), запущенный в 2021 году Космическим агентством Объединенных Арабских Эмиратов (UAESA) для изучения марсианской атмосферы, приблизился к Деймосу на рекордные 104 километра.

Это было максимальное сближение с естественным спутником за всю историю исследования системы Красной планеты. Результат: самые детализированные снимки и данные, которые меняют наше понимание его происхождения.
Деймос — меньший и наиболее удаленный из двух спутников Марса (второй — Фобос). Его средний диаметр составляет всего 12,4 километра, а орбита проходит на высоте около 23 500 километров от поверхности планеты. Этот каменистый спутник неправильной формы был открыт в 1877 году и назван в честь древнегреческого бога ужаса.

Первые снимки Деймоса были получены автоматической межпланетной станцией NASA "Маринер-9" в 1971 году. С тех пор спутник попадал в кадр многих миссий, но всегда издалека.
Зонд "Надежда" изменил это, сделав детальный снимок обратной стороны спутника и получив подробную информацию о его составе и структуре.
Продолжительное время господствовала гипотеза, что Деймос и Фобос — астероиды, попавшие в гравитационную ловушку Марса. Аргументация этой концепции была просто абсурдна: спутники слишком маленькие, кривые и непохожи на "нормальные" луны.

Инфракрасный спектрометр "Надежды" показал, что состав Деймоса ближе к марсианскому базальту, чем к астероидам класса D (темным объектам с красноватым спектром, которые очень плохо отражают свет).
Это весомое доказательство в пользу гипотезы, предложенной в 2018 году планетологом (планетологиней?) Робин Кануп, которая гласит, что спутники Марса являются фрагментами самой планеты, выброшенными в космос в результате древнего столкновения с массивным объектом. Моделирование показывает, что диаметр ударного тела мог достигать 1 000 километров. Для сравнения: средний диаметр Марса составляет 6 792 километра.
Примечательно, что эта гипотеза не только объясняет происхождение спутников Марса, но и дает подсказки касательно катастрофических климатических изменений, превративших Марс в промерзлую пустыню.
Этот снимок, сделанный ровером NASA Curiosity, может показаться ничем не примечательным: там-сям лежат камни, кое-где видно песок... Но это изображение — одно из самых убедительных доказательств того, что миллиарды лет назад на Марсе текли реки.

Целенаправленным поиском следов водного прошлого Красной планеты занимался еще марсоход NASA Opportunity, последней целью которого была древняя Долина Настойчивости, прорезающая склон 22-километрового кратера Индевор. Глобальная пылевая буря, изолировавшая планету от Солнца и выведшая Opportunity из строя, передала эстафету Curiosity.
Еще до обнаружения каких-либо весомых доказательств, ученые рассматривали два возможных варианта:
Curiosity вне всяких сомнений нашел второе.
Камни с гладкими краями. Мелкий песок между ними. Слоистые структуры на поверхности более крупной горной породы.
Округлые камни на снимке — классическая речная галька, точно такая же, как на берегах земных рек. Сглаживание граней обеспечивается длительным воздействием текущей воды: камни перекатываются по дну реки, трутся друг о друга, постепенно теряя острые углы. Процесс занимает десятки тысяч лет.

Сегодня у Марса нет плотной атмосферы, которая могла бы обеспечить существование жидкой воды на поверхности. Но в очень далеком прошлом газовая оболочка планеты была намного толще, температура выше. По поверхности текли реки. Вода активно формировала ландшафт.

Исходя из земного опыта, мы знаем, что вода — основа жизни. И, кажется, когда-то Марс располагал условиями для ее зарождения. Может быть, микробной, примитивной — но жизни. На поверхности мы ее не видим, так как катастрофические изменения могли вынудить ее уйти в глубины грунта, где сегодня более комфортно и безопасно... а для проверки этой гипотезы нужны специализированные аппараты следующего поколения. Но однажды они будут созданы и доставлены на Марс, чтобы бурить, собирать образцы и анализировать их в поисках ответов.
Эта фотография — послание из очень далекого прошлого. Марс когда-то был похож на Землю, но что-то "сломало" его, превратив в промерзлую пустыню.
В Антарктиде, на территории безжизненных и бесснежных Сухих долин Мак-Мердо, находится одно из самых удивительных природных образований на Земле — озеро Дон-Жуан.

Его площадь — всего 0,3 км², а средняя глубина — 10 сантиметров. Но главная особенность озера не в скромных размерах, а в солености (содержании солей), которая достигает 44%. Это делает Дон-Жуан одним из самых соленых водоемов на планете.
Для сравнения: соленость Мирового океана — 3,47% (почти в 13 раз меньше!), а Мертвого моря — 35%.
Несмотря на то, что температура в регионе может опускаться до -50 градусов Цельсия, озеро никогда не замерзает. Связано это с чрезвычайно высокой концентрацией хлорида кальция (CaCl2), который снижает точку замерзания до -51°C.
Долгое время считалось, что жизнь в этом водоеме невозможна. Но в 2013 году ученые обнаружили микроорганизмы — археи и бактерии — живущие в микроскопических пленках между кристаллами соли. Жизнь, как всегда, нашла путь.

Озеро Дон-Жуан — это не просто чудо природы, а естественная лаборатория для понимания Марса. Концентрация и состав солей, найденных роверами NASA, очень напоминают аналогичные параметры Дон-Жуана. Если подтвердится существование подледных соленых озер на Красной планете, то они, определенно, будут рассматриваться как главные кандидаты на роль пристанища для внеземной жизни.
Вероятно, когда-то жизнь процветала на поверхности Марса, но катастрофические климатические изменения, растянувшиеся на миллионы лет, могли вынудить наиболее живучих ее представителей неторопливо мигрировать под поверхность с параллельной адаптацией.
В состоянии бодрствования наш мозг работает как очень мощный компьютер с подключенными датчиками и сенсорами, которые позволяют осуществлять постоянную сверку внутренней модели мироустройства с потоком внешних сигналов.

Все, что мы видим, слышим и ощущаем, проходит перекрестную проверку на согласованность. И благодаря этой непрерывной сверке данных формируется стабильная и логичная картина реальности.
Но во время сна все меняется. Инструменты для сверки практически полностью отключаются, и мозг, освобожденный от необходимости сопоставлять знания об устройстве реальности с поступающей извне информацией, запускает режим "свободной сборки".
Он начинает генерировать образы, сюжеты и эмоции, комбинируя обрывки воспоминаний, страхов и желаний. Во время фазы быстрого сна (REM), когда мы видим наиболее яркие и запоминающиеся сновидения, активность префронтальной коры мозга, отвечающей за критическое мышление, резко снижается. Именно поэтому во сне мы не удивляемся возможности летать, ездить верхом на розовом пони и разговаривать с людьми, давно покинувшими мир живых.
Момент пробуждения — первый шаг очередной верификации. Мозг проводит быстрый аудит, сравнивая воспоминания о сне с новой порцией данных от органов чувств. Яркий солнечный свет, звук будильника, ощущение теплой постели — все это моментально обличает несостоятельность ночных галлюцинаций (а сны — это именно галлюцинации).

Так и происходит разграничение: то, что подтверждается органами чувств, — реальность; то, что остается лишь отрывочным воспоминанием, рассыпающимся, как песочный замок, через несколько часов после пробуждения, — сон.
Интересно, что эта система порой дает сбой. Во время резкого пробуждения или в состоянии сонного паралича мозгу не всегда удается оперативно сверить внутреннюю модель мироустройства с потоком внешних сигналов. Это ненадолго создает иллюзию отсутствия границы между вымыслом и явью. Поэтому визуальные, слуховые и тактильные галлюцинации, вызываемые сонным параличом, могут быть крайне пугающими и едва ли отличимыми от реальности.