Цветное изображение Венеры, полученное 5 июля 2007 года космическим аппаратом NASA MESSENGER, который был запущен 3 августа 2004 года для изучения Меркурия.
Поскольку Венера находится между орбитами Земли и Солнца, мы всегда видим ее на небе на относительно небольшом расстоянии от светила. Когда Венера находится по одну сторону от Солнца, то планета как бы следует за ним и становится более заметной во время заката на Земле. Однако каждые 584 дня Венера появляется по другую сторону от Солнца, и когда это происходит, то планета восходит утром до рассвета.
Древние греки и египтяне не знали этих астрономических деталей, поэтому они рассматривали Венеру как два разных небесных тела — утреннее и вечернее. Венеру, появляющуюся до восхода Солнца, греки называли Фосфором (др.-греч. Φωσφόρος — "несущий свет"), а Венеру, красующуюся на небосводе после захода Солнца, они называли Геспером (др.-греч. Ἕσπερος — "вечерний, западный").
Примечательно, что древние римляне знали, что перед ними один объект, но, переняв многое из греческой культуры, они не упустили возможность позаимствовать и отдельные определения для утренней и вечерней Венеры: Люцифер (лат. Lucifer — "светоносный") и Веспер (лат. Vesper — "вечерний") соответственно.
Вопрос о существовании разумной жизни за пределами Земли остается одной из величайших загадок для современной науки. Сегодня, когда современные космические телескопы регулярно открывают новые экзопланеты, а наши представления о масштабах Вселенной постоянно расширяются, поиск внеземных цивилизаций перешел из области фантастики в сферу серьезных научных исследований.
В основу этой статьи легли размышления профессора Джонти Хорнера из Центра астрофизики Университета Южного Квинсленда.
По мнению ученого, существование разумной жизни во Вселенной не вызывает сомнений. Однако главная проблема заключается в том, достаточно ли близко находятся другие цивилизации, чтобы человечество могло их обнаружить и, возможно, даже вступить с ними в контакт.
Масштабы космоса
Космическое пространство невероятно велико. За последние несколько десятилетий астрономы доказали, что планетные системы — это не редкость, а правило: практически у каждой звезды есть планеты. Наша галактика Млечный Путь насчитывает около 400 миллиардов звезд. Если предположить, что на орбите каждой из них находится в среднем по пять планет, то только в нашей Галактике существует два триллиона планет. При этом современная наука установила поразительный факт: в наблюдаемой Вселенной галактик больше, чем планет в Млечном Пути.
При таком колоссальном разнообразии миров представляется практически невозможным, что Земля — единственная планета, на которой возникла жизнь, включая разумную и технологически развитую. Однако обнаружить внеземные цивилизации будет невероятно сложно.
Вероятность обнаружения
Хорнер предлагает рассмотреть следующий сценарий: допустим, только у одной из миллиарда звезд есть планета, на которой могла развиться технологически продвинутая цивилизация, способная заявить о своем существовании во всеуслышание. В таком случае, в Млечном Пути будет около 400 звезд с развитой жизнью. Но наша Галактика настолько огромна — 100 000 световых лет в диаметре — что среднее расстояние между такими звездами составит порядка 10 000 световых лет.
При современном уровне развития технологий такие расстояния делают обнаружение инопланетных сигналов практически невозможным, если только они не обладают мощностью, значительно превосходящей возможности земных передатчиков. Даже если предположить, что некая цивилизация неосознанно распространяет радиоволны по всем направлениям, как это делает человечество, шансы зафиксировать такой сигнал крайне малы.
Таким образом, хотя существование внеземных цивилизаций представляется вполне вероятным с научной точки зрения, поиск доказательств их существования остается одной из сложнейших задач современной астрономии. Возможно, для ее решения потребуются принципиально новые технологии и методы наблюдения, разработка которых станет делом будущих поколений исследователей.
Все крупные космические тела во Вселенной, которые мы наблюдаем — от планет до звезд — имеют сферическую форму. И чем массивнее объект, тем более идеальной становится эта сфера. Почему же природа так настойчиво выбирает именно эту форму? Давайте разберемся на примере планеты.
Итак, все дело в гравитации. Когда планета формируется, она начинает притягивать к себе все больше материи — пыль, газ, астероиды. С ростом массы усиливается и гравитационное поле. Сила тяжести всегда направлена к центру тела, стремясь придать ему максимально компактную форму. А самая компактная форма в природе — это сфера.
Почему планета не может быть кубической?
У куба есть углы, которые находятся дальше от центра массы, чем остальные части. Гравитация не позволит этому существовать — она будет "стягивать" углы к центру, пока планета не примет форму шара — самую устойчивую форму для массивных космических объектов.
Кроме того, кубическая форма создала бы огромные перепады давления и температуры. Углы куба испытывали бы колоссальное напряжение, что привело бы к их разрушению. В итоге планета все равно бы "схлопнулась" в шар.
Малые космические тела, такие как кометы, астероиды и небольшие спутники, часто имеют неправильную форму, потому что их масса слишком мала, чтобы гравитация могла "вылепить" из них сферу. Для сравнения: астероид Психея с диаметром около 226 километров имеет неправильную форму, в то время как Земля с диаметром 12 756 километров стремится к идеальной сфере.
Впрочем, даже планеты не являются безупречными шарами. Из-за вращения вокруг своей оси они слегка сплющиваются на полюсах и расширяются на экваторе (звезды, между прочим, тоже). Это называется экваториальным утолщением. Например, полярный радиус Земли на 21,38 километра короче экваториального.
Интересный факт: Мимас, 396-километровый спутник Сатурна, является самым маленьким известным космическим телом, обладающим сферической формой из-за собственной гравитации.
На Марсе, в северных низменностях планеты, расположен удивительный природный феномен – кратер Королёва, настоящий ледяной оазис диаметром 82 километра. Он находится к югу от обширного поля дюн Olympia Undae, которое окружает часть северной полярной шапки планеты.
Кратер Королёва — это не просто впадина в марсианской поверхности, а уникальная природная морозильная камера, хранящая гигантские запасы водяного льда.
Естественный холодильник
Кратер Королева заполнен массивом льда толщиной 1,8 километра, который сохраняется круглый год. Это один из наиболее хорошо сохранившихся примеров марсианских кратеров, заполненных именно водяным льдом.
Механизм холодной ловушки
Кратер Королева представляет собой глубокую чашу, дно которой расположено почти на два километра ниже окружающей поверхности. Когда воздух проходит над ледяной поверхностью, он охлаждается и, становясь тяжелее, опускается вниз. Этот холодный воздух создает защитный слой непосредственно над льдом, действуя как изолятор.
Поскольку воздух – плохой проводник тепла, образуется своеобразный "щит", защищающий лед от нагревания и испарения. Благодаря этому естественному механизму кратер остается замороженным постоянно.
Исследования с орбиты
Первые снимки кратера были получены 4 апреля 2018 года камерой высокого разрешения HRSC космического аппарата ESA "Марс-экспресс". Для создания полной картины потребовалось объединить пять длинных полос изображений, снятых во время разных пролетов над кратером. Позже свой вклад в исследование внес и аппарат ESA Trace Gas Orbiter, который сфотографировал 40-километровый участок северного края кратера.
Кратер назван в честь Сергея Павловича Королёва, главного конструктора советской космической программы. Под его руководством были созданы первые искусственные спутники Земли в рамках программы "Спутник", осуществлены первые полеты человека в космос (программы "Восток" и "Восход", включая полет Юрия Гагарина в 1961 году), а также запущены первые межпланетные миссии к Луне, Марсу и Венере. Королев также работал над ракетами, которые стали предшественниками успешных носителей "Союз" – рабочих лошадок российской космической программы, используемых как для пилотируемых, так и для автоматических полетов.
Представьте планету, которая примерно на четверть больше Юпитера, но при этом находится так же близко к своей звезде, как Меркурий к Солнцу. А теперь добавьте невероятную деталь — эта планета поглощает 99% падающего на нее света, что делает ее чернее любого известного природного материала на Земле.
Экзопланета TrES-2b, находящаяся на расстоянии около 750 световых лет от Земли, стала настоящей диковинкой для астрономов. Этот мир, классифицируемый как "горячий юпитер", примерно в 1,2 раза массивнее Юпитера. При этом экзопланета поглощает свет эффективнее, чем уголь (поглощает 96% света) или даже свежий асфальт (поглощает 97% света).
Причина такой необычной черноты кроется в экстремальных условиях на планете:
Средняя температура составляет 1 600 градусов, что переводит некоторые нетипичные компоненты атмосферы (натрий и калий) в газообразное состояние.
В атмосфере присутствуют испаренные натрий и калий, а также оксид титана, создающие уникальную химическую среду.
При такой высокой температуре эти вещества взаимодействуют особым образом, что приводит к исключительному поглощению света.
Кроме того, в атмосфере TrES-2b, скорее всего, отсутствуют отражающие облака, подобные тем, что делают Юпитер таким ярким, несмотря на его удаленность от Солнца.
Экзопланета TrES-2b была открыта 21 августа 2006 года транзитным методом* с помощью наземного телескопа TrES, но ее уникальные свойства были выявлены позже благодаря совместным наблюдениям нескольких инструментов. Космический телескоп NASA "Кеплер" измерил невероятно низкое альбедо (отражательная способность) планеты, а телескоп NASA "Спитцер" помог исследовать ее тепловое излучение, подтвердив экстремальные условия, царящие в атмосфере. На полный оборот вокруг родительской звезды, представленной красным карликом, TrES-2b нужно менее чем 2,5 земных дня. Для сравнения, Меркурий совершает оборот вокруг Солнца за 88 земных дней.
*Метод транзита — один из основных способов обнаружения экзопланет, который заключается в наблюдении за уменьшением яркости звезды, когда перед ней проходит планета.
Эта загадочная экзопланета не просто расширила наши представления о возможных свойствах небесных тел — она показала, что даже базовые характеристики планет, такие как отражательная способность, могут выходить за пределы всего, что мы знали ранее. В то время как Земля отражает около 30% падающего на нее солнечного света, а Луна — 12%, существование планеты, поглощающей 99% излучения, заставляет задуматься: какие еще удивительные объекты скрываются в глубинах Вселенной, терпеливо дожидаясь своего момента открытия?
Именно эта высота официально признана международным сообществом как граница между атмосферой Земли и космическим пространством. Но почему именно 100 километров? Давайте вместе с вами разбираться в этой увлекательной истории.
История появления границы
Все началось в 1940-х годах, когда венгерско-американский инженер и ученый-механик Теодор фон Ка́рман (11 мая 1881 года — 6 мая 1963 года) проводил расчеты поведения летательных аппаратов на больших высотах. Именно его математические выкладки легли в основу определения границы космоса, которая теперь носит его имя — линия Ка́рмана.
Суть расчетов Кармана заключалась в следующем: с увеличением высоты воздух становится все более разреженным. На определенной высоте атмосфера становится настолько тонкой, что крылья самолета уже не могут создавать достаточную подъемную силу. Чтобы не упасть, летательному аппарату необходимо двигаться с первой космической скоростью — 7,91 километра в секунду. На такой скорости он уже не летит как самолет, а движется вокруг Земли как спутник.
Математическое обоснование
Карман рассчитал, что эта критическая точка находится на высоте около 100 километров. Именно здесь плотность атмосферы падает настолько, что для создания достаточной подъемной силы требуется скорость, равная первой космической. Это делает классический аэродинамический полет в общем-то невозможным.
В 1957 году Международная авиационная федерация (FAI) официально приняла высоту 100 километров над уровнем моря как рабочую границу между земной атмосферой и космосом. Это решение стало фундаментальным для международного космического права и определило принципы регулирования космической деятельности.
Разные подходы к определению границы
При общем признании стандарта в 100 километров существуют и другие подходы к определению границы космоса. Например:
NASA и Военно-воздушные силы США исторически считают границей космоса высоту 80 километров, хотя официально США, как и большинство стран, признают международный стандарт в 100 километров. Такое расхождение связано с тем, что на высоте 80 километров уже появляются первые признаки космического пространства, и американские пилоты, поднявшиеся на эту высоту, становятся кандидатами в астронавты.
Некоторые ученые предлагают установить границу на высоте 150 километров, где плотность атмосферы становится практически неощутимой.
Важно понимать, что линия Кармана — это условная граница. В реальности четкой физической границы между атмосферой и космосом не существует. Атмосфера постепенно становится все более разреженной с увеличением высоты, и этот процесс происходит плавно, без резких переходов.
Более того, высота, на которой атмосфера становится слишком разреженной для аэродинамического полета, может варьироваться в зависимости от:
Солнечной активности;
Времени года;
Географического положения;
Геомагнитных условий.
Практическое значение
Определение границы космоса имеет важное практическое значение для:
Граница в 100 километров является условной, но она служит важным ориентиром в космической деятельности человечества. Линия Кармана — это не произвольно выбранная высота, а результат серьезных научных расчетов, учитывающих физические особенности полета на больших высотах.
В будущем, с развитием технологий и углублением нашего понимания верхних слоев атмосферы, определение границы космоса может измениться. Но пока линия Кармана остается общепринятым стандартом, символической дверью в бескрайние просторы космоса.
Гипотеза о том, что на Уране и Нептуне могут идти дожди из алмазов, всерьез рассматривается научным сообществом. Это не фантазия, а обоснованное предположение, опирающееся на наши знания о химическом составе и физических условиях, что царят на этих планетах.
Несмотря на кажущуюся невероятность, идея имеет под собой твердую научную почву. Рассмотрим подробнее, на чем она основана и насколько может соответствовать действительности.
Научная основа
Гипотеза алмазных дождей на Уране и Нептуне базируется на трех ключевых факторах:
Состав атмосферы: Уран и Нептун, в отличие от газовых гигантов Юпитера и Сатурна, классифицируются как ледяные гиганты. Их атмосферы содержат значительное количество метана, простого соединения, состоящего из одного атома углерода и четырех атомов водорода (CH4).
Экстремальные условия: по мере погружения в глубины этих планет, условия становятся все более экстремальными. На определенных глубинах температура может достигать нескольких тысяч градусов Цельсия, а давление — миллионов атмосфер.
Превращение углерода: при таких экстремальных условиях происходят удивительные трансформации. Молекулы метана разрушаются, высвобождая атомы углерода. Под воздействием колоссального давления атомы углерода сжимаются настолько сильно, что перестраиваются, образуя кристаллическую решетку — структуру, характерную для алмаза.
Этот процесс напоминает ускоренную космическую версию земных "алмазных фабрик", где природа трудится миллионы лет под толщей горных пород. Однако на Уране и Нептуне этот процесс может происходить гораздо быстрее благодаря экстремальным условиям.
Экспериментальные данные
В 2017 году команда ученых из Стэнфордского университета провела эксперимент, имитирующий условия внутри Урана и Нептуна. Они использовали мощные лазеры для создания ударных волн в полистироле — полимере, состоящем из углерода и водорода.
Выбор полистирола был неслучайным: этот материал содержит те же элементы, что и метан (углерод и водород), но в твердой форме, что делает его удобным для лабораторных экспериментов. Хотя полистирол и метан имеют разную молекулярную структуру, они оба могут служить источником атомов углерода в условиях высокого давления и температуры.
Результаты эксперимента показали, что при высоких давлениях и температурах, сопоставимых с условиями в недрах Урана и Нептуна, действительно образовывались наноалмазы. Этот эксперимент стал важным подтверждением теоретических предсказаний о возможности формирования алмазов в атмосферах ледяных гигантов.
Как это может выглядеть
Если эта гипотеза верна, процесс может выглядеть так:
Высоко в атмосфере метан подвергается воздействию молний и превращается в сажу.
Сажа падает глубже в атмосферу, где давление и температура растут.
При определенных условиях сажа сжимается в кристаллы алмаза.
Алмазы продолжают падать, пока не достигнут таких глубин, где температура настолько высока, что они могут "испариться" или превратиться в жидкость.
Важно отметить, что мы пока не можем непосредственно наблюдать этот процесс. Наши знания о внутреннем строении Урана и Нептуна ограничены, и эта гипотеза основана на компьютерных моделях и лабораторных экспериментах.
Перед вами малоизвестный снимок Марса, полученный орбитальным аппаратом ОАЭ "Аль-Амаль" ("Надежда") 5 января 2022 года. В одном кадре оказались: обширная темная область Большой Сирт (лат. Syrtis Major), окутанная пылевой бурей, и спутник Фобос, безмятежно проплывающий над поверхностью Красной планеты.
Пылевые бури на Марсе — одно из самых масштабных явлений в Солнечной системе. В отличие от земных, марсианские бури могут достигать планетарного масштаба, окутывая весь мир пылевым одеялом на недели или даже месяцы.
На этом снимке мы видим региональную бурю, накрывающую Большой Сирт — один из самых темных и заметных регионов Красной планеты, имеющий вулканическое происхождение. Средний диаметр области составляет 1 300 километров.
Ученые уделяют пристальное внимание каждой марсианской буре, поскольку они играют ключевую роль в формировании климата планеты. Вздымающиеся частицы пыли насыщают разреженную атмосферу, влияя на ее температуру и температуру поверхности, создавая сложную систему обратных связей.
Фобос — обреченный спутник
В кадр также попал Фобос — ближайший и самый крупный из двух спутников Марса со средним диаметром 22,5 километра. Этот небольшой космический объект движется настолько быстро, что обгоняет вращение самого Марса. На полный оборот вокруг планеты Фобосу нужно всего 7 часов 39 минут. Если бы вы оказались на поверхности планеты, то наблюдали бы восход спутника на западе и заход на востоке.
Еще один интересный факт, связанный с Фобосом, заключается в том, что он — обреченный спутник. Фобос неумолимо приближается к Марсу со скоростью около двух метров за столетие. Результаты моделирования показывают, что примерно через 30-50 миллионов лет гравитация планеты разорвет Фобос на мелкие фрагменты, из которых сформируется временная кольцевая система.
Надежда Арабских Эмиратов
"Аль-Амаль" — первая межпланетная миссия арабского мира. Космический аппарат, в создании которого участвовали консультанты NASA, был запущен 19 июля 2020 года, а его выход на орбиту вокруг Марса состоялся 9 февраля 2021 года. И с тех пор зонд исследует атмосферу и климат планеты, включая суточные и сезонные изменения.
Снимки, подобные этому, имеют не только эстетическую, но и огромную научную ценность, позволяя отслеживать динамику атмосферных процессов.
Изучая Марс, мы лучше узнаем историю планеты-соседки и формируем представление о судьбе нашего собственного мира, поскольку обе планеты имеют много общего в своем геологическом прошлом.
"Астрономы обнаружили "алмазную планету", которая в пять раз больше Земли", "В космосе обнаружен алмаз размером с Землю", "Планета-алмаз — одно из чудес космоса" — такие заголовки все еще появляются в СМИ, рисуя в воображении читателей фантастические миры с сияющими алмазными горами и кристальными морями.
Особенно часто в контексте этих публикаций фигурирует экзопланета 55 Cancri e (55 Рака e), которую окрестили "алмазной планетой". Но давайте разберемся, почему существование таких планет с точки зрения науки невозможно.
Фантазии об алмазных мирах
Итак, чтобы понять, почему концепция "алмазной планеты" — это красивый миф, нужно вспомнить базовые принципы образования алмазов.
Алмаз — это кристаллическая модификация углерода, возникающая при специфических условиях. Для превращения углерода в алмаз необходимо сочетание экстремального давления (более 50 000 атмосфер) и высокой температуры (свыше 1 000 градусов Цельсия). На Земле природные алмазы формируются на глубине более 150 километров.
Теперь представим гипотетическую планету с высоким содержанием углерода. В ее недрах, где давление достигает колоссальных значений, действительно могут формироваться алмазные структуры. Однако по мере приближения к поверхности давление неизбежно падает. А без необходимого давления углерод существует в различных формах — графит, фуллерены, карбин, графен, аморфный углерод — но не в форме алмаза.
Именно поэтому полностью "алмазная планета" физически невозможна. Даже если в ядре такой планеты образуются алмазы, то на ее поверхности углерод будет существовать в иных формах, преимущественно в виде графита.
Откуда же взялся миф о том, что 55 Рака e — алмазная планета? В 2012 году астрономы установили, что эта экзопланета может быть богата углеродом. Масс-медиа подхватили эту новость, превратив "планету с высоким содержанием углерода" в "алмазную планету". Однако дальнейшие исследования показали, что даже исходное предположение о высоком содержании углерода может быть ошибочным.
Это не значит, что углеродные планеты неинтересны науке. Напротив! Планеты с высоким содержанием углерода могут существовать, и их изучение крайне важно для понимания разнообразия планетных систем во Вселенной. Просто реальность, как всегда, оказывается сложнее и интереснее простой "алмазной" фантазии.
Бывают моменты, когда Вселенная словно специально устраивает для ученых уникальные представления, позволяющие заглянуть за кулисы мироздания. Именно такой случай произошел в 1761 году, когда наблюдение за прохождением Венеры по диску Солнца помогло Михаилу Васильевичу Ломоносову сделать революционное открытие.
Прохождение Венеры по диску Солнца — одно из самых редких небесных явлений. На фоне ослепительно яркого солнечного диска появляется маленькая черная точка — планета Венера — и медленно движется по нему. Это событие повторяется дважды с интервалом в восемь лет, после чего следует перерыв более чем на столетие.
Наблюдения Ломоносова
26 мая 1761 года Ломоносов, как и многие астрономы по всему миру, готовился лицезреть это редкое явление. В то время как его коллеги в разных странах планировали использовать синхронные наблюдения для уточнения расстояния между Землей и Солнцем, русский ученый обратил внимание на необычное световое явление.
Наблюдая за тем, как Венера приближалась к краю солнечного диска, Ломоносов заметил удивительную деталь: вокруг темного силуэта планеты появилось светящееся кольцо. А когда Венера начала сходить с солнечного диска, ее край окаймлял тонкий светлый ободок.
Ломоносов понял: это свечение могло появиться только в одном случае — если у Венеры есть атмосфера. Солнечный свет, проходя через газовую оболочку планеты, преломлялся и создавал этот удивительный оптический эффект.
Значение открытия
Это открытие стало революционным для своего времени:
Впервые была обнаружена атмосфера на другой планете.
Появилось понимание, что другие планеты могут быть похожи на Землю.
Открылись новые перспективы в изучении планет Солнечной системы.
Наследие и будущие наблюдения
Сегодня мы знаем, что Ломоносов был абсолютно прав. Атмосфера Венеры не просто существует — она оказалась одной из самых плотных в Солнечной системе. Венерианская атмосфера состоит преимущественно из углекислого газа и создает на поверхности планеты чудовищное давление, в 92 раза превышающее земное.
История открытия атмосферы Венеры показывает, как внимательное наблюдение и научная интуиция могут привести к революционным открытиям. Методы, использованные Ломоносовым, легли в основу современных способов изучения экзопланет — мы до сих пор исследуем атмосферы далеких миров, наблюдая, как они влияют на проходящий через них свет.
Следующая пара прохождений Венеры по диску Солнца состоится только в 2117 и 2125 годах. Ученые уже планируют, как использовать эти события для новых исследований, продолжая традицию научных наблюдений, заложенную Ломоносовым более 250 лет назад.
Зонд был запущен 5 ноября 2013 года, а его выход на орбиту вокруг Красной планеты был осуществлен 24 сентября 2014 года. В апреле 2022 года связь с "Мангальяном" пропала, и после безуспешных попыток ее восстановления в октябре 2022 года Индийская организация космических исследований объявила о завершении миссии.
Сегодня сутки на Земле, смена которых обеспечивается оборотом планеты вокруг своей оси, длятся 24 часа (23 часа 56 минут и 4 секунды, если быть точнее). Но так было не всегда. В ходе уникальных исследований ученые выяснили: в далеком прошлом продолжительность суток на нашей планете была короче современных почти на четверть.
Роль удивительных хранителей времени досталась... кораллам. При росте эти морские животные формируют известковый скелет, в котором образуются тончайшие годовые кольца, похожие на кольца деревьев. Но самое интересное, что в скелете кораллов образуются не только годовые, но и суточные кольца роста. В современных кораллах за год образуется 365 суточных колец, но когда ученые исследовали ископаемые кораллы возрастом около 400 миллионов лет, они обнаружили нечто поразительное — за один годовой цикл формировалось в среднем 390 суточных колец! Это открытие стало первым прямым доказательством того, что в древности сутки на Земле были короче. Но кораллы оказались не единственными свидетелями изменения скорости вращения нашей планеты.
Лунный дирижер времени
Ключевую роль в истории земных суток сыграла Луна. Гравитационное притяжение нашего спутника вызывает приливы и отливы на Земле. Это постоянное движение водных масс создает приливное трение, которое постепенно замедляет вращение планеты. В результате такого взаимодействия Луна получает дополнительный импульс и медленно удаляется от Земли примерно на 3,8 сантиметра в год.
И именно благодаря этому древнему танцу Земли и Луны ученые получили еще одно удивительное свидетельство изменения продолжительности земных суток. На дне древних морей* сохранились уникальные слоистые отложения. Ритмичное чередование приливов и отливов создавало в осадочных породах последовательные слои — своеобразные отметки времени в каменной летописи Земли. Изучая количество приливных слоев в годовых отложениях и зная законы небесной механики, ученые смогли определить, как менялась продолжительность суток на разных этапах истории нашей планеты.
*Речь идет о морях, существовавших на Земле сотни миллионов лет назад, когда материки имели совсем другие очертания, а в водах только начинала зарождаться сложная жизнь.
Молекулярные часы в горных породах
В 2019 году ученые обнаружили, что приливные силы вызывают тончайшие изменения в структуре некоторых минералов. Эти едва уловимые перестройки на молекулярном уровне сохраняются в кристаллах как своеобразные "отпечатки времени", которые можно расшифровать с помощью современных технологий. Такой метод не только подтвердил результаты предыдущих исследований, но и позволил получить более точные данные о продолжительности суток в различные геологические эпохи.
Благодаря этим разнообразным методам исследований ученые установили, что:
1,4 миллиарда лет назад земные сутки длились всего около 18 часов;
620 миллионов лет назад сутки длились примерно 21,9 часа;
400 миллионов лет назад сутки длились около 22,7 часа;
70 миллионов лет назад, во времена динозавров, продолжительность суток составляла уже примерно 23,5 часа.
Взгляд в прошлое и будущее
Анализ изменений продолжительности суток позволил ученым не только реконструировать историю Земли, но и лучше понять множество важных процессов: от эволюции климата до формирования магнитного поля. Эти исследования показывают, насколько тесно связаны все компоненты нашей планеты — от движения небесных тел до микроскопических изменений в кристаллах минералов.
Более того, даже сейчас, в наши дни, процесс замедления вращения Земли продолжается. Каждое столетие продолжительность суток увеличивается примерно на 1,8 миллисекунды. И хотя это изменение настолько мало, что мы его не замечаем в повседневной жизни, сверхточные атомные часы способны уловить этот неумолимый ритм трансформации нашей планеты.
Земля — это динамическая система, находящаяся в постоянном развитии. Каждое мгновение в недрах планеты, в океанах и атмосфере происходят сложнейшие процессы, меняющие облик нашего мира. И чем глубже мы погружаемся в изучение прошлого Земли, тем яснее осознаем, насколько удивителен и хрупок этот голубой шар, который мы называем своим домом.
Представьте себе астероид диаметром 10 километров, несущийся к Земле со скоростью 30 километров в секунду. Если этот гигант столкнется с нашей планетой, то место его падения не будет иметь особого значения — будь то океан или суша, последствия будут одинаково катастрофическими.
Даже Марианская впадина — самая глубокая точка Мирового океана с глубиной 11 034 метра — не сможет стать препятствием. В отличие от небольших астероидов, этот космический снаряд практически не замедлится при прохождении через атмосферу — она будет пробита, словно тонкая бумага.
Момент катастрофы
При столкновении с земной корой высвободится колоссальная энергия. Температура в точке удара достигнет таких значений, что большая часть астероида и земной породы просто испарится. Образуется гигантский кратер диаметром более 100 километров. Ударная волна многократно обогнет планету, вызывая разрушительные землетрясения, гигантские цунами и пробуждая спящие вулканы повсюду.
Часть обломков, образовавшихся при ударе, улетит в космос и сформирует вокруг Земли кольцо. Массивные раскаленные фрагменты, падающие обратно на поверхность планеты, вызовут множественные пожары по всему миру. Мощное тепловое излучение от места удара и выброшенного материала усугубит ситуацию, превращая континенты в "огненный ад".
Через несколько недель или месяцев атмосфера остынет, но в ней останется столько пыли и сажи от удара и пожаров, что солнечный свет практически перестанет достигать поверхности Земли. Наступит период глобального похолодания. Впрочем, до этого момента доживут немногие.
История может повториться
Подобный сценарий уже разворачивался на Земле около 66,5 миллиона лет назад, когда астероид (или комета) такого же размера создал кратер Чикшулуб на территории современной Мексики. Результатом стало исчезновение динозавров и примерно 75% всех видов живых существ на планете.
Согласно научным данным, астероиды подобного масштаба сталкиваются с Землей каждые 50-100 миллионов лет. Это означает, что мы живем в эпоху, когда такая угроза вполне реальна. Именно поэтому критически важно развивать технологии обнаружения и предотвращения столкновений с опасными космическими объектами. Человечество должно быть готово защитить свой единственный космический дом.
Гравитационное поле Земли - невидимая, но фундаментальная сила, формирующая облик нашей планеты. Обычно это поле равномерно распределено по земной поверхности, незримо воздействуя на все объекты. Но, анализируя данные, полученные в ходе миссии NASA GRACE, ученые обнаружили нечто поистине удивительное - огромную аномалию в гравитационном поле Земли, своеобразную "вмятину" планетарного масштаба. Эта загадочная область бросает вызов нашему пониманию геофизики и привлекает внимание исследователей со всего мира.
Эта аномалия находится в самом сердце Индийского океана. На карте гравитационного поля она выглядит как темно-синее пятно, указывающее на значительно меньшую концентрацию земной массы в этой области по сравнению с окружающими регионами.
В поисках ответов
В 2018 году Национальный центр полярных и океанических исследований Индии (NCPOR) приступил к исследованию аномалии, развернув вокруг нее сеть донных сейсмометров — высокочувствительных приборов, способных уловить малейшие колебания земной коры.
Однако, несмотря на годы исследований, окончательного ответа у ученых пока нет. Но есть несколько интригующих гипотез:
Взаимодействие ядра и мантии
Некоторые ученые полагают, что аномалия может быть вызвана динамическими процессами на границе ядра и мантии Земли. Там происходят сложные взаимодействия между жидким внешним ядром и твердой нижней мантией, которые могут создавать структурные неоднородности. Эти неоднородности в распределении массы и плотности на глубине могут проявляться как гравитационные аномалии на поверхности Земли.
Мантийные течения
Другая гипотеза связывает "вмятину" с сейсмическими низкоскоростными аномалиями в верхней мантии. Эти аномалии представляют собой области, где сейсмические волны движутся медленнее, чем в окружающих породах. Такие зоны часто интерпретируются как участки с повышенной температурой или частичным плавлением пород. Эти особенности могут влиять на распределение массы в мантии, что, в свою очередь, может создавать наблюдаемые аномалии в гравитационном поле Земли.
Пожалуй, самая захватывающая гипотеза предполагает, что аномалия связана с океаном Тетис, существовавшим в эпоху мезозоя. Согласно этой идее, океанические литосферные плиты, формировавшие дно Тетиса, активно погружались под материковые плиты, создавая глубокие впадины. Впоследствии эти впадины были покрыты новыми литосферными плитами, образовавшими дно современного Индийского океана. Однако древние структуры частично сохранились, создавая наблюдаемую сегодня гравитационную аномалию. По сути, эта гипотеза предполагает, что под дном Индийского океана скрывается дно исчезнувшего океана Тетис.
Гравитационная аномалия в Индийском океане - это не просто научная загадка. Она символизирует огромный потенциал для открытий, который таят в себе наши океаны. Эта "вмятина" в гравитационном поле Земли напоминает нам, как мало мы знаем о мире под водой, покрывающей более 70% поверхности нашей планеты.
Изучение подобных феноменов требует не только передовых технологий, но и постоянного присутствия человека в океанских глубинах. Это подводит нас к мысли о необходимости более активного освоения океана, включая возможность создания постоянных подводных поселений. Такой шаг не только расширил бы наши научные горизонты, но и открыл бы новые возможности для человечества в целом.
Иногда научные открытия полностью противоречат тому, что мы называем "логикой". Еще не так давно, если бы кто-то заявил, что на раскаленном Меркурии, ближайшей к Солнцу планете, находятся гигантские залежи водяного льда, то этого человека в лучшем случае восприняли бы как... фантазера. Но природа, как показывает практика, способна удивлять нас снова и снова.
Перед вами 60-километровый кратер Кандинский, расположенный около северного полюса Меркурия. Это необычное геологическое образование хранит одну из самых интригующих тайн Солнечной системы — обильные запасы водяного льда на планете, где дневная температура может достигать 430 градусов Цельсия.
Как такое возможно? Все дело в уникальной геометрии кратера. Его основание находится в постоянной тени, надежно изолированное от испепеляющих солнечных лучей крутыми стенками. В этих вечно затененных областях температура может опускаться до -180 градусов, создавая идеальные условия для сохранения водяного льда.
Кратер получил свое имя в честь Василия Васильевича Кандинского — русского художника, одного из основоположников абстракционизма. Это не случайно: практически все кратеры на Меркурии носят имена выдающихся деятелей искусства, что превращает карту планеты в своеобразную галерею славы человеческой культуры.
Уникальные снимки кратера были получены 13 августа 2013 года космическим аппаратом NASA MESSENGER. Чтобы заглянуть в вечную тьму, инженерам пришлось проявить недюжинную изобретательность: камеры аппарата использовали солнечный свет, отраженный от стенок кратера, чтобы различить детали в его темных глубинах.
Но Меркурий — не единственное место, где лед прячется в неожиданных местах. На Луне также обнаружены затененные кратеры, хранящие водяной лед. А под ледяными панцирями спутников Юпитера — Ганимеда, Европы и Каллисто — предположительно скрываются целые океаны жидкой воды. Кроме того, подповерхностными океанами могут обладать Диона, Мимас, Титан и Энцелад — спутники Сатурна. И, согласно новым исследованиям, обладателем подповерхностного океана может быть даже Плутон.
Марсианский кратер Виктория — настоящая космическая достопримечательность. Этот ударный гигант впечатляет своими размерами: около 750 метров в диаметре и глубиной примерно 70 метров.
Снимок, сделанный орбитальным аппаратом NASA Mars Reconnaissance Orbiter (MRO), раскрывает удивительные детали. По краям кратера видны слоистые породы — как годовые кольца на спиле дерева, они рассказывают историю геологического прошлого Красной планеты.
Интересно, что именно этот кратер исследовал ровер NASA Opportunity, проведя здесь почти год своей миссии. Виктория — не просто огромная яма, сформировавшаяся в результате падения космического камня, а настоящая машина времени, позволяющая заглянуть в далекое прошлое Марса.
На этом завораживающем снимке мы видим гигантские циклоны на южном полюсе Юпитера. В центре находится один большой вихрь, окруженный кольцом из шести циклонов, каждый из которых сравним по размеру с территорией США. Благодаря инфракрасной съемке мы можем видеть, как эти колоссальные штормы генерируют тепло в атмосфере планеты.
Интересный факт: эти полярные циклоны вращаются против часовой стрелки со скоростью около 350 км/ч и остаются неизменными с момента их первого обнаружения в 2016 году.
На самом краю нашей Солнечной системы, там, где солнечный свет становится едва различимым, предположительно существует гигантская сферическая область, заполненная триллионами ледяных тел. Это загадочное образование получило название "облако О́орта" в честь нидерландского астронома Яна Оорта, который в 1950 году теоретически обосновал его существование.
Парадокс этого космического образования заключается в том, что мы не можем увидеть его напрямую. Находясь на расстоянии от 2 000 до 100 000 астрономических единиц от Солнца (одна а.е. — среднее расстояние между Землей и Солнцем, около 150 миллионов километров), объекты облака Оорта слишком малы и тусклы для современных телескопов. Однако все же существуют весьма убедительные доказательства существования этой структуры.
Таинственная сферическая область
Главным доказательством существования облака служат долгопериодические кометы. Эти космические странники появляются из самых дальних уголков Солнечной системы, двигаясь по сильно вытянутым эллиптическим орбитам. Математический анализ их траекторий указывает на существование общего источника – сферического резервуара ледяных тел на границе гравитационного влияния Солнца.
Дополнительным аргументом служит тот факт, что химический состав этих комет удивительно схож между собой – они содержат похожие пропорции водяного льда, замерзших газов и пыли, что указывает на их формирование в одних и тех же условиях, которые могут царить на окраинах Солнечной системы.
Температура в этой области космоса приближается к абсолютному нулю – около -220 градусов Цельсия. В таких условиях даже газы превращаются в лед, формируя своеобразные "грязные снежки" из замерзшей воды, метана, углекислого газа и космической пыли. По оценкам ученых, общая масса всех объектов облака Оорта может составлять от одной до десяти масс Земли.
Современные компьютерные модели показывают, что облако Оорта могло сформироваться на ранних этапах развития Солнечной системы. Гравитационное влияние молодых планет-гигантов выбросило значительную часть протопланетного вещества на колоссальные расстояния от центра системы. На таком удалении гравитация Солнца становится очень слабой, и объекты начинают сильнее реагировать на гравитационное воздействие проходящих мимо звезд и галактического центра. Эти внешние силы за миллиарды лет "перетасовали" орбиты ледяных тел во всех возможных направлениях, постепенно превратив дискообразное скопление в сферическую оболочку. Это объясняет уникальную форму облака Оорта, отличающую его от плоского диска, в котором расположены планеты и астероиды Солнечной системы.
Изучение облака Оорта важно не только для понимания эволюции нашей планетной системы. Некоторые ученые предполагают, что именно кометы из этого резервуара могли доставить на молодую Землю значительную часть воды и органических соединений, необходимых для зарождения жизни.
В 2019 году команда ученых из Университета Кагосимы в Японии, возглавляемая астрофизиком Кэйити Вада, представила революционную гипотезу: планеты могут формироваться и существовать не только вокруг звезд, но и вокруг сверхмассивных черных дыр.
Эти гипотетические объекты получили название "бланеты" — от английских слов "black hole" (черная дыра) и "planet" (планета). Возможность их существования бросает вызов традиционным представлениям о формировании планетных систем и открывает новые горизонты в понимании устройства Вселенной.
От гипотезы к реальности
Концепция планет, обращающихся вокруг черных дыр, может показаться фантастической, но она имеет серьезные научные основания. Современные исследования показывают, что вокруг сверхмассивных черных дыр существуют все необходимые условия для формирования планет: достаточное количество материала в аккреционных дисках и стабильные орбиты на безопасном расстоянии от горизонта событий.
Черная дыра, вопреки распространенному заблуждению, не представляет собой гигантский пылесос, засасывающий все вокруг. Любая черная дыра обладает конечной массой, а значит у ее "гравитационных полномочий" есть предел. По этой причине вокруг черных дыр могут вращаться (и вращаются!) космические тела. Более того, орбиты вокруг черной дыры могут быть даже более стабильными, чем вокруг звезд, поскольку черные дыры не испытывают таких драматических изменений как звезды.
Главное отличие бланет от обычных планет — это источник освещения. Вместо света родительской звезды такой мир освещало бы свечение аккреционного диска черной дыры. На стабильной орбите гравитация на поверхности бланеты могла бы быть вполне комфортной для жизни, однако близость черной дыры создавала бы уникальные условия. Из-за релятивистских эффектов наблюдатель на поверхности бланеты видел бы сильно искаженное звездное небо, а свет бы причудливо изгибался из-за искривления пространства-времени.
Основной вопрос — откуда бланеты могут получать энергию? Главным и наиболее мощным источником энергии для них мог бы служить аккреционный диск черной дыры, представляющий собой гигантскую структуру из раскаленных газа и пыли, вращающихся вокруг черной дыры на огромных скоростях. При движении вещества в аккреционном диске выделяется колоссальное количество энергии - до 40% массы вещества превращается в излучение. Для сравнения: термоядерные реакции в звездах переводят в энергию менее 1% массы.
Дополнительным источником тепла могла бы служить внутренняя энергия самой бланеты — геотермальная активность, подобная той, что мы наблюдаем на Земле. Особенно если учесть, что приливные силы со стороны черной дыры могли бы усиливать эти процессы.
Возможна ли жизнь?
Вопрос о возможности существования жизни на бланетах особенно интересен с научной точки зрения. Если такая жизнь существует, она должна обладать уникальными адаптациями к специфическим условиям своей среды.
Основные вызовы
Главным вызовом для жизни стало бы излучение от аккреционного диска черной дыры. На Земле от подобного — но несоизмеримо менее интенсивного — излучения нас защищают:
Магнитное поле планеты, отклоняющее заряженные частицы;
Атмосфера, поглощающая большую часть вредного излучения;
Бланетам понадобились бы схожие защитные механизмы, но более мощные. Мы знаем, что некоторые земные организмы, например, тихоходки или бактерии Deinococcus radiodurans, способны выживать при очень высоких дозах радиации. На бланетах могли бы появиться организмы с еще более эффективными механизмами защиты.
Использование доступной энергии
Земная жизнь научилась использовать солнечный свет через фотосинтез. Аналогично, организмы на бланетах теоретически могли бы развить механизмы улавливания и преобразования излучения аккреционного диска. Это могло бы быть что-то похожее на фотосинтез, но адаптированное к другому спектру излучения.
Суточные ритмы
Из-за особенностей орбитального движения вокруг черной дыры, смена дня и ночи на бланете могла бы существенно отличаться от земной. Это потребовало бы от живых организмов иных циклов активности и отдыха, возможно, более длительных или, наоборот, более коротких, чем у обитателей Земли.
Заключение
На сегодняшний день бланеты остаются гипотетическими объектами, но изучение этой возможности имеет важное научное значение. Исследование условий формирования и существования планет в экстремальных условиях помогает нам лучше понять фундаментальные принципы планетообразования и пределы условий, в которых возможно существование материи в планетарной форме. Эти знания могут быть применены не только к гипотетическим бланетам, но и к изучению экзопланет в необычных звездных системах. В будущем, с развитием наблюдательных технологий, астрономы смогут проверить эту гипотезу и, возможно, обнаружить первые свидетельства существования планет у сверхмассивных черных дыр.