Главный источник энергии, как правило, один: сверхмассивная черная дыра, вокруг которой идет аккреция. Газ и пыль, падая к черной дыре, разогреваются в аккреционном диске и начинают излучать колоссальную энергию в широком диапазоне. У части активных ядер дополнительно возникают узкие релятивистские струи (джеты), направленные в противоположные стороны вдоль оси вращения.
По современным представлениям, сверхмассивные черные дыры есть в большинстве галактик, но активность включается не всегда: чтобы ядро стало "активным", ему нужен достаточно высокий приток вещества. Активные галактики и активные ядра делят на несколько наблюдательных классов: сейфертовские галактики, радиогалактики, квазары и блазары. Их различия во многом определяются двумя параметрами: реальной мощностью аккреции и под каким углом мы наблюдаем систему. Квазары выделяются экстремальной светимостью: в таких объектах ядро настолько яркое, что может "перебивать" свет всей галактики-хозяина.
Да. Слепые от рождения действительно видят сны, но это не привычные большинству из нас "картинки", а сновидения, собранные из звуков, тактильных ощущений, движений в пространстве, запахов и эмоций.
Когда зрячие люди слышат слово "сон", то они автоматически представляют сцену или сюжет, разворачивающийся как зрительная картинка, которую порой невозможно отличить от реальности. Но с научной точки зрения сновидение вообще не обязано быть визуальным. Сон — это "контролируемая галлюцинация", генерируемое мозгом переживание на базе воспоминаний, ощущений и ожиданий без внешнего стимула. Поэтому правильнее сформулировать вопрос иначе: есть ли у слепых от рождения зрительные образы во сне, сопоставимые с теми, что видят зрячие?
Что показывают исследования
В ходе одного из самых цитируемых исследований 1999 года былпроведен анализ сотен сновиденийу слепых взрослых, который показал: у людей, слепых с рождения или с очень раннего возраста, визуальные составляющие сновидений практически отсутствуют, зато в изобилии присутствуют ссылки на осязание, вкус, запах и слух.
Систематический обзор работна эту тему, опубликованный в 2023 году, приходит к аналогичному выводу: у слепых с рождения устойчивые "зрительные" впечатления не выявлены, кроме случаев, когда у человека не полная слепота, а присутствует остаточное зрение (различает свет/темноту, видит крупные контуры или движение).
Если слепота приобретенная
Если человек был зрячим, например, в детстве, то мозг успел накопить зрительные представления об окружающем мире, и тогда во снах могут сохраняться визуальные элементы (пусть и видоизменяемые со временем).
Этот контраст, наблюдаемый между врожденно слепыми и ослепшими со временем, регулярно отмечается в исследованиях по нейронауке сна.
Феномен "визуальных снов" у слепых от рождения
Некоторые современные исследования описывают случаи, когда люди с врожденной слепотойсообщали о "визуальном контенте"в своих сновидениях. Объективная проверка этих заявлений с помощью электроэнцефалографии* (ЭЭГ) и зарисовок увиденного во сне показала, что слепые от рождения сталкиваются не со зрительным опытом в привычном смысле, а с пространственной моделью, созданной на основе данных, полученных с помощью функционирующих органов чувств.
*Электроэнцефалография — безопасный, неинвазивный метод исследования функционального состояния головного мозга путем регистрации его электрической активности через электроды, размещаемые на коже головы.
Например, слепой от рождения может "видеть" во сне далекую вспышку, а после ощущать жар. Эта модель может быть создана на базе воспоминаний, связанных с прогулкой в летний жаркий день, когда неистово "пекло Солнце".
Ученые подчеркивают, что слово "видеть" в таких исследованиях требует осторожной интерпретации, чтобы не вводить в заблуждение.
Итак, вывод: слепые от рождения люди не видят в своих снах "картинок", но вместо этого испытывают яркие слуховые, тактильные и вкусовые "контролируемые галлюцинации".
В 1960 году швейцарско-американский батискаф "Триест" достиг дна Бездны Челленджера — самой глубокой точки Мирового океана (10 935 ± 6 метров). Там, где давление составляет примерно 1 100 атмосфер, экипаж спустил донный трал, в который попались 90 бокоплавов (амфипод), ставших первым доказательством существования жизни (да еще и многоклеточной!) в Бездне Челленджера.
Выяснилось, что исследователи имеют дело с бокоплавами вида Hirondellea gigas, который был описан еще в 1955 году советскими учеными Бирштейном Яковом Аркадьевичем и Виноградовым Марком Евгеньевичем по образцам с экспедиций судна "Витязь" к Курильско-Камчатской впадине (образцы были получены с глубины около 6 800 метров).
Тогда-то океанологи поняли, насколько же удивительны эти создания.
Гиганты среди своих
Слово "gigas" (гигантский) неслучайно является частью названия. При длине тела около 7,5 сантиметра (у самцов) они втрое крупнее своих прибрежных родственников. Парадокс: на глубине, где дефицит привычной для морских существ пищи, обитают самые крупные представители семейства. Как такое возможно?
Ответ нашли японские ученые. В 2012 году, изучая бокоплавов в Бездне Челленджера с помощью глубоководнойкамеры ASHURA, облаченной в каркас из бальзы (охромы), исследователи увидели, как эти обитатели глубин с жадностью набросились на деревянные элементы. За три часа было съедено около 40% каркаса! Оказалось, что эти амфиподы умеют переваривать древесину.
Штормы и наводнения сносят деревья в океан. Сначала бревна плавают, но постепенно обрастают морскими организмами и начинают тонуть. На критической глубине (1000–1500 метров) давление выдавливает воздух из древесины — и она быстро уходит на дно.
Пока рыбы и крабы дерутся за редкую падаль в верхних слоях, на самое дно оседает то, что никому из них не нужно — древесина. Именно она стала ключевой частью рациона Hirondellea gigas. Их уникальный фермент целлюлаза превращает целлюлозу в глюкозу. И самое интересное, что лучше всего этот фермент работает именно под чудовищным давлением. Эволюция породила идеального обитателя бездны.
Думаете, что эффективное поедание древесины — главная особенность этого чудесного творения природы? Как бы не так!
Броня из алюминия
На глубине в 11 километров давление превращает растворенный углекислый газ в угольную кислоту, а значит панцири из карбоната кальция должны растворяться. Но Hirondellea gigas нашли выход: они выделяют глюконовую кислоту из кишечника, которая вытягивает алюминий из донного ила. Когда алюминий попадает в щелочную морскую воду, он сразу густеет, превращаясь внерастворимый защитный гель, который обволакивает панцирь.
Владыки бездны
Эти существа живут огромными мигрирующими стаями, насчитывающими сотни особей. Самки способны вынашивать до 250 яиц прямо на себе. Продолжительность жизни Hirondellea gigas оценивается в 5-10 лет.
Эти амфиподы — истинные владыки самых темных глубин Мирового океана. Там, где человек может находиться лишь несколько минут и на борту батискафа, они чувствуют себя прекрасно, размножаются и процветают миллионы лет.
В 2025 году китайские ученые полностьюрасшифровали их геном(13,92 гигабазы), который оказался одним из крупнейших среди животных. Это достижение приближает нас к пониманию того, как зародилась и развивалась жизнь на самой прекрасной планете Солнечной системы.
А всё потому, что многие важные и сложные соединения, необходимые для зарождения жизни могут формироваться не на планете, а прямо в космосе... Если раньше уже находили сложные молекулы на основе углерода, вроде бензольных колец. То тут добрались уже до сложных соединений серы, которые просто необходимы для синтеза белков и работы ферментов, а также сера входит в состав аминокислот метионин и цистеин.
Нашли енти молекулы по микроволновому излучению молекулярного облака G+0.693-0.027 в центре нашей галактики на расстоянии всего 27 тысяч световых лет.
Вот так выглядит схематическое изображение "важной" молекулы.
А называется она 2,5-циклогексадиен-1-тион (ненавижу когда химики матюгаются), который является структурным изомером тиофенола (c-C6H 6S).
Причём метод, используемый учёными позволяет идентифицировать молекулы по спектру с высочайшей точностью, как вора по отпечаткам пальцев. Зафиксированный спектр излучения подвергался преобразованиям "chirped-pulse Fourier" (честно говоря я не понял суть метода и не знаю как его перевести на русский, гугло-переводчик и пр несут бред)...
Отсутствие серы в таких сложных молекулах было весьма сложным препятствием, потому как сера, попадающая или уже имеющаяся в наличии на планете обычно сразу вступает в реакцию с сильными окислителями (кислород, фтор, хлор), а оттуда вытащить её в состав к-либо органической молекулы весьма и весьма сложно. Теперь их нашли, что делает сильно снижает возможность зарождения жизни в "планетарной пробирке" по типу наша планета...
Крупнейший спутник Плутона — Харон — имеет средний диаметр около 1 212 километров. Для сравнения: средний диаметр самого Плутона составляет 2 376,6 километра. Снимок был получен 14 июля 2015 года космическим аппаратом NASA "Новые горизонты".
Масса Харона — примерно 12% от массы Плутона (Луна — всего 1,2% от массы Земли). Из-за столь большого отношения массы спутника к карликовой планете (≈0,12) центр масс системы Плутон-Харон находится вне Плутона. В случае с системой Земля-Луна центр масс расположен внутри нашей планеты, на глубине около 1 700 километров от поверхности, что типично для "классической" пары: основное тело и заметно более легкий спутник.
Плутон и Харон в эти рамки не вписываются, поэтому ученые спорят: Харон — просто спутник или же второй полноценный компонент двойной системы карликовых планет.
Ранним утром 18 мая 1979 года посадочный аппарат NASA "Викинг-2", работавший на Марсе с 3 сентября 1976 года, передал на Землю уникальный кадр: равнина Утопия, окутанная сверкающим инеем.
На неровной поверхности, усыпанной камнями разных форм и размеров, временно появился тонкий слой замерзшего углекислого газа (CO2) и водяного инея — почти как утренний иней на Земле. В момент съемки температура в районе посадки составляла около −80 °C.
Этот снимок стал одним из первых прямых доказательств наличия водяного льда на Марсе. Кроме того, в месте посадки "Викинга-2" обнаружили минеральные соли, а в рамках экспериментов зафиксировали необычные химические реакции, которые интерпретировали как возможные намеки на микробную активность — хотя споры об этом идут до сих пор.
Сегодня мы знаем, что на Красной планете водяного льда очень много, включая гигантские подповерхностные залежи. Это делает Марс не только привлекательной астробиологической целью, но и перспективным местом для строительства небольших научных станций — по примеру земных полярных баз. Вода — крайне важный ресурс, необходимый не только для питья, но и для получения кислорода и топлива.
Сетчатка глубоководных рыб — чудо эволюционной оптимизации. Благодаря уникальным фоторецепторам — светочувствительным нейронам в сетчатке — их глаза способны регистрировать отдельные фотоны света, что крайне необходимо для выживания в темноте океанских глубин, полностью изолированных от солнечного света*.
*На таких глубинах единственным источником света является биолюминесценция (свечение, возникающее в результате химической реакции окисления светоизлучающих веществ) других существ.
Эта суперспособность существует благодаря тому, что:
Глаза глубоководных рыб часто огромны относительно тела, и это позволяет им улавливать максимум света;
В сетчатке преобладают палочки — фоторецепторы, отвечающие за сумеречное зрение;
В глазах многих видов присутствует особый слой — тапетум (как у кошек), который отражает и перенаправляет непоглощенные фотоны обратно на светочувствительные клетки, давая им второй шанс;
Некоторые глубинные рыбы лишились цветного зрения ради достижения наиболее детализированной монохромной картинки.
Эта природная технология представляет огромный интерес для науки и инженерии. Изучение механизмов работы фоторецепторов глубоководных рыб приведет к появлению сверхчувствительных оптических сенсоров нового поколения. Такие датчики найдут применение во всевозможных сферах — от астрономии, где нужно улавливать свет чрезвычайно далеких объектов, до медицины, например, в методах низкоинтенсивной диагностики.
Спутник Юпитера Ио — самое вулканически активное тело в Солнечной системе. Его вулканы выбрасывают серу и диоксид серы на высоту до 500 километров! Причина такой активности — приливные силы Юпитера, которые буквально "месят" недра Ио как тесто. Температура лавы достигает 2 000 °C — горячее земных вулканов. На поверхности нет воды, зато есть временные озера, заполненные расплавленной серой.
В 1979 году космический аппарат NASA "Вояджер-1" впервые сфотографировал извержение вулкана Пеле с выбросом на 300 километров. Ученые были шокированы, так как никто не ожидал найти действующие вулканы так далеко от Солнца, да еще на относительно небольшом небесном теле (средний диаметр Ио — 3 643 километра).
Сегодня на Ио идентифицировано более 400 вулканов. Этот желто-оранжевый мир постоянно обновляет свою поверхность со скоростью около сантиметра в год, погребая любые кратеры под новыми потоками лавы.
В 2006 году английский язык пополнился необычным глаголом — "to pluto" (в русском переводе — "оплутонить"). Американское диалектное общество (American Dialect Society) даже признало его "Словом года". Смысл простой: лишить статуса, обесценить то, что когда-то считалось важным и значимым.
Глагол, как вы уже могли догадаться, напрямую связан с одним из самых громких событий в современной астрономии — переклассификацией Плутона из полноценной планеты в карликовую планету.
Плутон был открыт 18 февраля 1930 года 24-летним американским астрономом Клайдом Томбо. В тот исторический период человечество мало что знало об устройстве Солнечной системы, поэтому новую находку почти сразу наградили статусом девятой планеты. И Плутон удерживал это звание более 76 лет — до августа 2006 года, пока на Генеральной ассамблее Международного астрономического союза (IAU) его официально не перевели в категорию карликовых планет.
Почему Плутон оплутонили?
Это немного странно, но до 2006 года термин "планета" был скорее историческим, чем строго научным. Уточнение потребовалось после обнаружения множества объектов в поясе Койпера (по соседству с Плутоном). Кульминацией стало открытие Эриды в 2005 году — объекта, который, исходя из полученных данных, казался даже крупнее Плутона.
Во избежание хаоса (Солнечная система могла пополниться десятками новых планет), IAU ввел четкое определение планеты. Объект, чтобы получить этот статус, должен соответствовать трем критериям:
Вращаться вокруг Солнца, но при этом не быть спутником. Плутон — соответствует.
Обладать достаточной массой, чтобы под действием гравитации принять почти сферическую форму (гидростатическое равновесие). Плутон — соответствует.
Очистить окрестности своей орбиты от других объектов сопоставимого размера (быть гравитационно доминирующим в своей зоне). Плутон — не соответствует.
Орбита Плутона пролегает через пояс Койпера, где тысячи массивных ледяных тел. Плутон — один из многих объектов такого рода, и он не доминирует в этой области.
Поэтому было решено, что объекты, не удовлетворяющие последнему критерию, отныне будут классифицироваться как карликовые планеты. Сейчас их официально пять: Церера, Плутон, Эрида, Хаумеа и Макемаке. Кроме того, есть еще четыре объекта такого рода, которые рассматриваются астрономами как карликовые планеты, но пока не получили официального признания от IAU: Седна, Квавар, Орк и Гун-гун.
А еще в поясе Койпера есть не менее четырех десятков других ледяных объектов-кандидатов, масса и размеры которых продолжают уточняться. По предварительным данным, многие из них достаточно массивны, чтобы пополнить список карликовых планет. И нет сомнений, что с появлением новых мощных телескопов число известных карликовых планет будет только расти.
Решение вызвало (и вызывает до сих пор) бурную реакцию: от гнева и разочарования до мемов и шуток. Именно в этой буре родился глагол to pluto, ставший символом того, что наука непрерывно развивается. То, что вчера казалось незыблемым, завтра может быть пересмотрено — и это нормально.
Плутон, конечно, от наших манипуляций не стал меньше или хуже — он остался тем же далеким, загадочным миром на краю Солнечной системы с горами, разреженной атмосферой, пятью спутниками и, вероятно, даже с подповерхностным океаном.
Птицы видят магнитное поле Земли. Это не метафора, а буквальное зрительное восприятие, возможное благодаря светочувствительному белку криптохрому в клетках сетчатки. Когда фотон синего света попадает на молекулу криптохрома, он запускает цепную реакцию: образуется пара радикалов — молекул с неспаренными электронами.
Спины (квантовые моменты) этих электронов оказываются в состоянии квантовой запутанности. Сверхслабое магнитное поле планеты влияет на взаимную ориентацию спинов, что меняет химическое состояние всей молекулы. В результате на сетчатке создается световой паттерн или "тень", которая меняется в зависимости от ориентации птицы.
Из этого следует, что птица видит "магнитную навигационную сетку", наложенную на обычное зрение, как будто в ее распоряжении очки дополненной реальности. Поразительно, но этот механизм идеально работает в "теплой и влажной" биологической ткани, где подобные квантовые эффекты, казалось бы, обречены на мгновенное разрушение из-за декогеренции*.
*Декогеренция — взаимодействия с окружающей средой, особенно в теплых и шумных условиях, как в живых организмах, вызывающие разрушение квантовых эффектов.
Используя систему воздушных мешков в носовом канале, дельфины генерируют высокочастотные щелчки. Эти звуки фокусируются жировой линзой (мелоном) в выпуклой части лба, формируя направленный ультразвуковой луч. Сигнал, отражаясь от объектов, возвращается и улавливается не ушами, а акустическими рецепторами на нижней челюсти, которые представляют собой сложную голографическую приемную систему.
Полученное "эхо" обрабатывается мозгом с невероятной точностью, позволяя создавать трехмерную картину окружающего пространства. Примечательно, что эта способность не просто позволяет видеть форму, но и дает возможность "просвечивать" объекты. Сонар дельфина способен различать плотность, структуру и внутреннее строение тканей. Именно поэтому существует гипотеза, что дельфины могут "видеть" беременность у сородичей (а возможно, и у других видов, включая людей) — их акустические сигналы, по сути, выполняют роль биологического УЗИ-аппарата, выявляя изменения в органах.
Однако этот "акустический томограф" работал бы вхолостую, если бы не мозг, способный не только визуализировать звуковые данные, но и моментально корректировать картинку реальности, если происходят какие-либо изменения. Во время охоты дельфины не просто "видят" свою потенциальную добычу, но и тут же рассчитывают расстояние до нее, а также ее скорость и траекторию. Динамическое "звуковое изображение" становится основой для мгновенных моторных команд — чтобы поймать рыбу или избежать препятствия.
Космическая хроника — это увлекательное путешествие сквозь пространство и время через астрономические снимки. В этой рубрике вас ждут обзоры как легендарных фотографий эпохи первых космических миссий, так и новейших изображений от современных космических телескопов, наземных обсерваторий и талантливых астрономов-любителей. Каждый кадр, представленный здесь, — это окно в далекие миры, рассказы о взрывах звезд, столкновениях галактик и бесчисленных тайнах космоса, которые человечество продолжает неустанно исследовать.
Прохождение Венеры по диску Солнца
На снимке запечатлен очень редкий астрономический момент — прохождение Венеры по диску Солнца. Темная точка в верхней части солнечного диска — это наша планета-соседка Венера, проходящая точно между Землей и светилом на рассвете 6 июня 2012 года. Это было второе из текущей пары прохождений — первое состоялось 8 июня 2004 года.
Транзит продолжался более шести часов, и миллионы людей по всему миру наблюдали это явление в телескопы, бинокли и даже невооруженным глазом, используя специальные солнечные фильтры.
Транзиты Венеры происходят парами с интервалом 8 лет, но между парами проходит более столетия. Причина — орбиты Венеры и Земли лежат в разных плоскостях, и лишь изредка три небесных тела — Солнце, Венера и Земля — выстраиваются в идеальную линию.
Предыдущая пара прохождений наблюдалась в 1874 и 1882 годах, а следующая произойдет только в 2117 и 2125 годах. Выходит, что прохождение 2012 года было последней возможностью для всех ныне живущих людей наблюдать это явление.
Снимок был сделан болгарским астрофотографом Эмилом Ивановым.
Результат космической катастрофы
Галактика Колесо Телеги (ESO 350-40), находящаяся на расстоянии около 500 миллионов световых лет от Земли в созвездии Скульптора, — это живой памятник лобового столкновения двух галактик.
В прошлом ESO 350-40 была спиральной галактикой, похожей на Млечный Путь, но около 200-440 миллионов лет назад в нее влетела карликовая галактика-спутник. Она двигалась настолько быстро, что избежала поглощения, оставив после себя лишь "шрамы". Последствием этого события стали характерные кольцевые структуры и радиальные "спицы", придающие галактике вид гигантского колеса телеги.
Внешнее кольцо расширяется со скоростью около 89 километров в секунду, сталкиваясь с окружающим межгалактическим газом и запуская интенсивные вспышки звездообразования. Ядро Колеса Телеги, скрывающее сверхмассивную черную дыру, окружено плотными облаками горячей пыли и молодыми звездными скоплениями.
Изображение было получено 2 августа 2022 года космическим телескопом NASA "Джеймс Уэбб", чей инфракрасный взор позволил заглянуть сквозь завесы пыли и увидеть галактику с беспрецедентной детализацией.
Марсианский рассвет
Рассвет на Красной планете. Тонкие, почти призрачные облака плывут над марсианским горизонтом, подсвечиваемые первыми лучами восходящего Солнца. Из-за чрезвычайной разреженности атмосферы Марса такие облачные образования — редкость, и их исследование дает ученым ценную информацию о климатических изменениях на планете.
Изображение было получено 20 ноября 2023 года ровером NASA Perseverance, который работает на Марсе с 18 февраля 2021 года. Марсоход находится в 45-километровом кратере Езеро, возраст которого оценивается в 3,5-3,8 миллиарда лет. Это место было выбрано для посадки не случайно: радарные исследования и орбитальные снимки показали, что когда-то кратер был заполнен водой, представляя собой озеро, в которое впадала как минимум одна крупная река с дельтой. Именно в таких водных средах миллиарды лет назад могла зародиться примитивная микробная жизнь, следы которой Perseverance продолжает искать.
Perseverance методично исследует осадочные породы кратера, собирая образцы для будущей доставки на Землю. Недавние находки, включая странные«леопардовые пятна»в породе, повышают вероятность того, что Марс когда-то был обитаемым миром.
Спутник с землеподобной атмосферой
Титан — крупнейший спутник Сатурна, и единственная луна в Солнечной системе, обладающая плотной атмосферой. Более того, она состоит в основном из азота, как и атмосфера нашей планеты.
Земная атмосфера — это примерно 78% азота, 20,9% кислорода, 0,9% аргона. Оставшиеся 0,2% приходятся на водород, гелий, неон, диоксид углерода и прочие газы.
Атмосфера Титана — около 98,3% азота, 1,6% из метана и аргона. Оставшиеся 0,1% приходятся на ацетилен, диацетилен, диоксид углерода, метилацетилен, пропан, этан и другие газы.
Ученые считают, что атмосфера Титана напоминает атмосферу ранней Земли — до того, как цианобактерии насытили ее кислородом. Исследователи, изучающие происхождение жизни, считают, что сатурнианский спутник — окно в прошлое нашей планеты.
Изображение было получено 26 октября 2004 года космическим аппаратом NASA "Кассини" во время первого близкого пролета мимо Титана. На снимке отчетливо видны высотные слои атмосферной дымки и облака, подсвечиваемые Солнцем.
Величайшая гора Солнечной системы
Перед вами Олимп — потухший марсианский вулкан и самая высокая гора в Солнечной системе. Его высота от основания до вершины составляет около 26 километров, что почти в три раза выше Эвереста. Диаметр основания вулкана достигает 540 километров, что делает его больше Энцелада, потенциально обитаемого 504-километрового ледяного спутника Сатурна, обладающего подповерхностным океаном жидкой воды.
На вершине Олимпа расположена кальдера размером 65 на 85 километров, а ее максимальная глубина превышает три километра. Вулкан настолько огромен, что космические аппараты видят его задолго до приближения к планете.
Это цветное изображение в истинных цветах было получено 26 февраля 2021 года арабским орбитальным аппаратом "Аль-Амаль" с расстояния в 13 007 километров от марсианской поверхности.
На изображении — безымянная галактика, удаленная примерно на 5,7 миллиарда световых лет от нас. Этот кадр — результат объединения данных, полученных с помощью космической рентгеновской обсерватории NASA "Чандра" и наземного комплекса радиотелескопов ALMA (Чили).
Яркое пятно в центре представляет собой раскаленный газопылевой "кокон" вокруг сверхмассивной черной дыры. Темные зоны сверху и снизу — области холодного газа.
Обычно черные дыры рассматриваются как разрушители, но этот объект доказывает, что не все так однозначно. Мощные струи плазмы (джеты), вырывающиеся из окрестностей дыры, не разгоняют окружающую материю, а напротив — запускают производство холодного газа.
У некоторых возникнет вопрос:
"Как раскаленная струя плазмы может что-то охладить?"
На первый взгляд это действительно звучит иррационально. Это как пытаться заморозить воду огнеметом.
Но тут весь секрет в физике расширения. Джеты, двигаясь с огромной скоростью, выталкивают газовые облака подальше от черной дыры. Там газ начинает стремительно расширяться, теряя энергию и... остывая. Именно этот холодный газ — ключевой компонент для рождения новых звезд.
Все это формирует замкнутый цикл: черная дыра стимулирует звездообразование, чтобы потом "полакомиться" частью новых светил. В будущем, испуская новые джеты, она станет причиной появления следующего поколения звезд. И все повторится вновь, пока запасы окружающего газа не подойдут к концу — лишь тогда черная дыра уснет.
Так выглядит одна из двух версий солнечного затмения для наблюдателя на Марсе — или, точнее, транзит Фобоса, крупнейшего из двух спутников Красной планеты, по диску Солнца.
Из-за своей неправильной картофелеобразной формы, малого размера (27×22×18 километров) и удаленности от планеты спутник не может закрыть светило целиком, как это делает Луна во время наблюдения солнечных затмений на Земле. Даже в максимуме Фобос перекрывает лишь около 40% звездного диска.
Изображение было получено 2 апреля 2022 года марсоходом NASA Perseverance. На сегодняшний день это самая детализированная фотография солнечного затмения в истории марсианских наблюдений.
Интересный факт: Фобос — обреченный спутник. Он медленно сближается с планетой и примерно через 50 миллионов лет будет разорван приливными силами Марса на крошечные фрагменты, что приведет к формированию временной кольцевой системы.
2 февраля 2005 года орбитальный аппарат Европейского космического агентства (ESA) "Марс-экспресс" передал на Землю потрясающий снимок: кратер Лаут, расположенный недалеко от северного полюса Красной планеты, предстал во всей красе. В центре оранжево-коричневого марсианского ландшафта — ослепительно белое пятно водяного льда.
Средний диаметр ударного образования составляет 39 километров, а его глубина достигает полутора километров. Часть дна кратера покрыта отложением водяного льда, который не тает круглый год.
Лед вне полюсов — редкость
Большинство людей уверены: весь лед на Марсе сосредоточен на полюсах. Это не совсем так.Да, полярные шапки — самые крупные ледяные массивы планеты, которые с Земли можно наблюдать даже в небольшой телескоп. Но лед встречается и в других местах — правда, при определенных условиях. Главное из них — постоянная затененность.Кратер Лаут — один из немногих примеров стабильного присутствия водяного льда за полярными регионами. Его расположение и глубина создают идеальные условия: солнечные лучи почти не достигают дна, так что температура там остается низкой на протяжении всего марсианского года.
Почему лед не исчезает?
На Марсе крайне низкое атмосферное давление — около 0,6% от земного. В таких условиях вода не может существовать в жидком виде на поверхности: она либо замерзает, либо сублимирует — превращается в пар, минуя жидкую фазу.
Поэтому для сохранения льда нужна постоянная низкая температура. Если дно кратера освещено Солнцем — лед быстро испарится. Но в глубоких тенистых ударных структурах, подобных Лауту, температура никогда не перешагивает через критическую отметку. Немаловажный вклад в обеспечение низкой температуры и сохранности ледяного покрова вносит близость к северному полюсу — здесь холоднее, чем в экваториальных широтах.
Бесценный ресурс для будущих миссий
Анализ данных, полученных с помощью "Марс-экспресс" и NASA MRO (еще один орбитальный аппарат), показал, что лед в кратере Лаут относительно чистый. Это важно. Марсианский грунт содержит перхлораты — агрессивные химические соединения, опасные для человека. Поэтому лед, смешанный с грунтом или добытый из-под поверхности, будет требовать сложной очистки. А вот чистый лед из кратеров — готовый ресурс.Вода будет нужна марсианским колониям для всего: питье, гигиена, выращивание растений, производство кислорода и даже ракетного топлива. Метод электролиза позволяет расщепить воду на водород и кислород — оба компонента пригодны для двигателей.
Кратер Лаут и подобные ему природные образования, заполненные обильными запасами чистого водяного льда, могут стать стратегическими точками для возведения первых баз на Марсе.
Марс-экспресс продолжает работу
Космический аппарат "Марс-экспресс", запуск которого состоялся 2 июня 2003 года, продолжает работать. Его бортовые инструменты позволили создать детальные карты поверхности, изучить разреженную атмосферу и обнаружить следы древних водоемов.Кратер Лаут — лишь одна из тысяч удивительных находок, которые помогают нам понять прошлое Марса и подготовиться к формированию его будущего.
Меркурий — одно из самых враждебных мест в Солнечной системе. Днем поверхность планеты разогревается до 430 градусов Цельсия (достаточно, чтобы расплавить цинк), а ночью остывает до −170. Атмосфера крайне разреженная, магнитное поле слабое (около 1% от земного) — защиты от космической радиации почти нет. Но при этом Меркурий может быть обитаемым.
Ученые из Планетологического института в штате Аризона, анализируя архивные данные, обнаружили на ближайшей к Солнцу планете нечто неожиданное — соляные ледники, которые могут стать убежищем для жизни.
Неожиданная находка MESSENGER
Космический аппарат NASA MESSENGER, изучавший Меркурий с 18 марта 2011 года до 30 апреля 2015 года, нашел на планете такие летучие соединения, как калий, натрий, сера и хлор, которые, как предполагали ученые, за более чем 4,5 миллиарда лет должны были полностью улетучиться из-за чудовищных порывов солнечного ветра, чрезвычайно разреженной атмосферы и низкой гравитации. Однако соединения, определенно, присутствуют.
Поиски источников летучих соединений привели исследователей к 263-километровому кратеру Радитлади в северном полушарии и области Бореалис, находящейся там же. Анализ данных показал, что летучие соединения "заперты" в гигантских подповерхностных ледниках. Когда в те места попадают астероиды, то происходит частичное обнажение ледников, из которых высвобождаются летучие соединения, временно насыщающие атмосферу.
Появление соляных ледников
Авторы исследования предполагают, что в далеком прошлом Меркурий был совсем другим миром. Вулканы выбрасывали водяные пары, содержащие соли, которые конденсировались во временные водоемы. Вода быстро испарялась, но соли оставались; за миллионы и миллионы лет этот повторяющийся процесс привел к появлению многослойных солевых отложений — соляных ледников.
Примечательно, что похожие места есть на Земле в пустыне Атакама в Чили. И там, несмотря на экстремальные условия, процветают микроорганизмы, которые научились выживать в концентрированных соляных растворах.
"Специфические солевые соединения создают пригодные для жизни ниши даже в самых суровых условиях, — комментирует Алексис Родригес, ведущий автор исследования. — Это заставляет нас задуматься о возможности существования на Меркурии подповерхностных областей, которые могут быть более гостеприимными, чем его суровая поверхность".
В ноябре 2026 года к Меркурию прибудет зонд BepiColombo (совместная европейско-японская миссия), оснащенный продвинутыми инструментами, которые будут задействованы для изучения соляных ледников. Это позволит проверить гипотезу о потенциальной обитаемости самой маленькой планеты Солнечной системы.
Вы, вероятно, когда-то слышали, что нефть образовалась из останков динозавров. Следовательно, когда вы заправляете автомобиль, то буквально заливаете в бак переработанного тираннозавра или велоцираптора. Каким бы распространенным ни был этот миф, он не имеет ничего общего с реальностью.
На протяжении сотен миллионов лет мертвые водоросли и планктон опускались на дно древних морей и океанов Земли, где накапливались, формируя многослойные структуры. Постепенно их погребали осадочные породы, что создавало идеальные условия для трансформации.
Под воздействием колоссального давления и при дефиците кислорода органические остатки буквально "сварились", превратившись в густую черную жидкость — нефть, которой мы, люди, видимо, насытимся не скоро, несмотря на климатические изменения, набирающие обороты.
Примечательно, что процесс образования нефти продолжается и сегодня - планктон по-прежнему умирает и оседает на океаническое дно. Но для превращения этой массы в "черное золото" нужны десятки миллионов лет, поэтому нефть считается невозобновляемым ресурсом.
Нефть легче горных пород, поэтому под действием подземного давления постепенно мигрирует к поверхности, где упирается в непроницаемые горные породы. Скважины, пробуренные людьми, способны изменить ситуацию — напор нефти устремляется наружу. В некоторых случаях нефть может "вырваться на свободу" и без участия человека. Например, в результате сильного землетрясения.
"Если все это действительно так, то почему нефтяные месторождения встречаются не только в океане, но и на суше?" — спросит недоверчивый читатель.
Все просто: современные нефтяные месторождения на суше когда-то были дном древних морей. Естественное движение тектонических плит и изменение уровня океанов за сотни миллионов лет кардинально изменили географию Земли. И эти изменения непрерывно продолжаются. То, что сегодня является сушей, через сотни миллионов лет может стать дном какого-нибудь нового моря.
Морские динозавры, разумеется, тоже умирали и опускались на океаническое дно, но нефтью в итоге не стали. Связано это с тем, что крупные туши поедались быстрее, чем оказывались погребенными под толщей других туш, а после осадочных пород.
Для образования нефти нужна бескислородная среда, где органика может "вариться" миллионы лет без разложения. Микроскопические водоросли и планктон в огромных количествах создавали именно такие условия — их было слишком много, чтобы все съели.