18 февраля 2021 года марсоход NASA Perseverance сделал то, что до него удавалось только его предшественнику Curiosity — он запечатлел свою собственную посадку на Марс. На высоте около десяти километров над поверхностью Красной планеты были сделаны кадры, которые позволяют нам увидеть Марс "глазами" робота-первопроходца.
Перед нами не просто любопытное изображение — это настоящая техническая симфония, созданная путем объединения десяти отдельных снимков, полученных камерой системы технического зрения посадочного модуля (Lander Vision System Camera, LVSC). LVSC — не обычный фотоаппарат, а часть сложной системы навигации, которая помогала марсоходу найти безопасное место для посадки.
Серебряный страж
На снимке можно увидеть удивительную деталь — серебристый диск, падающий на поверхность Марса. Это тепловой щит, который подобно верному стражу защищал Perseverance во время спуска через атмосферу Марса, когда температура вокруг марсохода достигала экстремальных значений.
Система камер, сделавшая эти снимки, представляет собой настоящий прорыв в технологии космических исследований. Впервые в истории марсианских миссий робот мог в реальном времени анализировать поверхность планеты и самостоятельно — без вмешательства со стороны земных операторов — корректировать траекторию посадки.
Значение момента
Этот снимок — больше чем просто техническая документация. Это свидетельство триумфа человеческой мысли, момент, когда созданный людьми аппарат готовится совершить одну из самых сложных операций в истории космонавтики — точную посадку на поверхность другой планеты.
Сегодня Perseverance продолжает свою миссию на Марсе, исследуя кратер Езеро в поисках возможных следов древней жизни. Но этот снимок навсегда останется символом его первой встречи с Красной планетой.
Перед вами наиболее детальные изображения (ниже) поверхности Европы, полученных когда-либо. Эти исторические кадры были сделаны космическим аппаратом NASA "Галилео" 16 декабря 1997 года во время максимального сближения с юпитерианским спутником. Современные технологии обработки изображений позволили значительно улучшить их качество, открыв новые детали ледяной поверхности.
В момент съемки "Галилео" находился на высоте около 200 километров от поверхности Европы, двигаясь под углом примерно 50 градусов относительно экватора спутника. Для сравнения, Международная космическая станция вращается вокруг Земли на средней высоте 408 километров под углом 51,6 градуса к экватору. Ближайшее к камере разрешение составило шесть метров на пиксель, постепенно увеличиваясь к верхней части снимков.
Европа представляет собой уникальное космическое тело со средним диаметром около 3 122 километров. Под ее ледяной корой, толщина которой колеблется от 10 до 30 километров, скрывается океан жидкой воды. Согласно современным исследованиям, глубина этого океана может достигать 179 километров. Для сравнения: глубина самой глубокой точки Мирового океана на Земле — Марианской впадины — достигает "всего" ~11 километров (Бездна Челленджера). Это значит, что подледный океан Европы может быть примерно в 16 раз глубже, чем самое глубокое место на нашей планете.
Именно наличие жидкой воды делает Европу одним из наиболее перспективных мест для поиска внеземной жизни в нашей Солнечной системе.
Новая эра в исследовании этого загадочного спутника Юпитера начнется в 2030 году. Для детального изучения Европы были запущены две масштабные миссии. Первая из них, Jupiter Icy Moons Explorer (JUICE), разработанная Европейским космическим агентством (ESA), была успешно запущена 14 апреля 2023 года. Этот аппарат исследует сразу три спутника Юпитера: Ганимед, Европу и Каллисто — все они обладают подповерхностными океанами. JUICE достигнет системы Юпитера в июле 2031 года.
Вторая миссия, NASA Europa Clipper, стартовала 14 октября 2024 года. Этот космический аппарат, созданный специально для изучения Европы, прибудет к Юпитеру в апреле 2030 года.
Основными задачами миссии станут:
Подтверждение наличия подповерхностного океана;
Детальное картографирование поверхности Европы;
Поиск возможных выбросов воды (гейзерная активность);
Изучение химического состава поверхности спутника.
Эти амбициозные проекты помогут ученым собрать важнейшие данные об условиях на Европе, определить точную глубину и, возможно, даже состав ее подповерхностного океана, а также изучить влияние Юпитера на внутреннюю структуру спутника. Следующее десятилетие обещает стать революционным в исследовании этого загадочного мира, скрытого под толщей льда.
Периодически на просторах интернета встречается утверждение, что Юпитеру "чуть-чуть не хватило массы" для превращения в звезду. На деле же это серьезное искажение реальности: разница между массой Юпитера и минимальной звездной массой колоссальна.
В настоящее время Юпитер генерирует значительное количество энергии за счет гравитационного сжатия. Планета ежегодно сокращается примерно на два сантиметра, преобразуя гравитационную потенциальную энергию в тепловую. Этот процесс приводит к общему излучению в 335 триллионов ватт – примерно на 67% больше энергии, чем газовый гигант получает от Солнца.
При всей мощи этих процессов, температура в ядре Юпитера достигает лишь 24 000 градусов Цельсия, тогда как для начала термоядерных реакций необходима температура около семи миллионов градусов. Достижение такой температуры требует значительно большего гравитационного давления.
Предел Кумара
Для запуска термоядерных реакций масса объекта должна превышать так называемый предел Кумара – около 80 масс Юпитера (или примерно 0,08 массы Солнца). Это минимальная масса, необходимая для создания достаточного давления и температуры в ядре для начала термоядерных реакций.
Текущие параметры
Масса Юпитера составляет 1,9 × 10^27 килограммов. Для достижения звездного статуса требуется масса около 1,6 × 10^29 килограммов. При такой массе гравитационное сжатие создало бы необходимые условия для самоподдерживающихся термоядерных реакций, превратив планету в красный карлик — самый маломассивный тип звезд.
Существующая масса Юпитера оптимальна для текущей конфигурации Солнечной системы. Его гравитационное влияние играет ключевую роль в поддержании стабильности орбит других планет (особенно Марса) и защите внутренней Солнечной системы от крупных астероидов и комет. Достаточно вспомнить драматическое столкновение кометы Шумейкеров — Леви 9 с Юпитером в 1994 году – планета-гигант приняла удар на себя.
Гравитационное поле Юпитера отклоняет или захватывает большинство крупных комет и астероидов, которые могли бы достичь внутренних планет (включая Землю). Кроме того, его влияние структурирует пояс астероидов.
Помимо гравитационного влияния, Юпитер обладает мощнейшей в Солнечной системе (после Солнца) магнитосферой. Его магнитное поле в 14 раз сильнее земного, что обеспечивает дополнительную защиту как собственным спутникам, так и внутренней части Солнечной системы.
Магнитное поле Земли создает вокруг планеты особые области, заполненные заряженными частицами. Эти области, известные как радиационные пояса или пояса Ван Аллена, являются частью общей системы магнитной защиты нашей планеты.
История их открытия началась в 1958 году. Джеймс Ван Аллен, американский физик из Университета Айовы, установил на первом американском спутнике "Эксплорер-1" счетчик Гейгера. Ученый хотел измерить космические лучи вокруг Земли. Но когда спутник достиг высоты около 1 000 километров, прибор перестал работать.
Поначалу думали, что прибор был неисправен или произошел технический сбой. Однако Ван Аллен предположил иное: счетчик перестал работать из-за перенасыщения — уровень радиации оказался слишком высоким. Последующие запуски "Эксплорер-3" и "Эксплорер-4" подтвердили его догадку – вокруг Земли существуют особые области, где магнитное поле планеты способно захватывать и удерживать заряженные частицы из космического пространства. Так наука узнала о существовании радиационных поясов, которые были справедливо названы в честь их первооткрывателя.
Что представляют собой пояса?
Это две кольцевые области, расположенные одна внутри другой вокруг нашей планеты:
Внутренний пояс располагается на высоте 1 000 — 6 000 километров;
Внешний пояс находится на высоте 13 000— 60 000 километров.
В этих областях магнитное поле Земли захватывает и удерживает заряженные частицы: протоны и электроны, приходящие в основном от Солнца и от других источников космического излучения.
Радиация в поясах действительно представляет опасность, но:
Космические корабли проектируются с учетом прохождения через пояса;
Траектории полетов рассчитываются так, чтобы минимизировать время пребывания в опасных зонах;
Современная защита космических аппаратов способна значительно снизить воздействие радиации.
В ходе лунной программы NASA "Аполлон" пояса преодолевались за 30-60 минут по специально рассчитанной траектории. При этом астронавты получали допустимую дозу радиации, которая была значительно ниже опасного для здоровья уровня.
Пояса Ван Аллена динамичны: их форма и интенсивность меняются под влиянием солнечной активности. В 2012 году NASA запустило специальные зонды Van Allen Probes для детального изучения поясов. Было установлено, что во время сильных солнечных бурь иногда может формироваться временный третий пояс.
Пояса Ван Аллена - важная часть магнитной защиты Земли. Здесь магнитное поле планеты захватывает и удерживает заряженные частицы из космоса. Современные исследования этих областей помогают лучше понимать взаимодействие Земли с космической средой и прогнозировать космическую погоду.
Несмотря на высокий уровень радиации, пояса Ван Аллена не являются непреодолимой преградой для космических полетов. Современные технологии защиты космических аппаратов и правильно рассчитанные траектории позволяют безопасно пересекать эти области.
В повседневной жизни мы даже не задумываемся о том, что постоянно участвуем в грандиозном космическом движении. Наша планета не только вращается вокруг своей оси, но и движется по орбите вокруг Солнца, а вместе с Солнечной системой — вокруг центра Млечного Пути. Почему же мы не ощущаем этого движения? Давайте разбираться.
Земля вращается вокруг своей оси со скоростью около 1675 км/ч на экваторе. В средних широтах скорость вращения меньше — чем ближе к полюсам, тем медленнее движение, так как точки на поверхности Земли описывают окружности меньшего диаметра за те же 24 часа. При этом мы совершенно не замечаем этого движения.
Почему мы не чувствуем движения
Основной принцип, объясняющий наше спокойное существование на вращающейся планете, — это равномерность движения и отсутствие изменений в ускорении. Все на Земле, включая нас, атмосферу и океаны, движется с одинаковой скоростью относительно оси вращения планеты. Это похоже на то, как мы не чувствуем движения в плавно летящем самолете или едущем поезде - пока скорость постоянна, наши органы чувств не регистрируют перемещение. Они реагируют только на изменения скорости или направления движения: ускорение, торможение, повороты.
Гравитация играет ключевую роль в том, что мы не улетаем с поверхности вращающейся планеты. Она удерживает не только нас, но и атмосферу Земли, которая вращается вместе с планетой как единое целое. Это создает стабильную среду, в которой мы живем.
Эффекты вращения Земли
Хотя мы не чувствуем вращения планеты напрямую, его влияние проявляется во многих явлениях:
Смена дня и ночи;
Сила Кориолиса, влияющая на движение воздушных масс;
Экваториальная выпуклость Земли;
Приливы и отливы (в сочетании с влиянием Луны).
А если бы Земля остановилась?
Если бы Земля внезапно прекратила вращение вокруг своей оси, последствия были бы катастрофическими. По закону инерции все на поверхности Земли сохранило бы скорость движения: на экваторе — 1675 км/ч, а ближе к полюсам — немного меньше. Люди и все незакрепленные объекты были бы мгновенно сметены этим движением, а здания разрушены чудовищными перегрузками. Кроме того, резкая остановка вращения вызвала бы:
Вращение Земли - это не просто механическое движение. Оно создает условия, необходимые для жизни:
Равномерное распределение солнечного тепла;
Магнитное поле, защищающее от космической радиации;
Стабильный климат;
Циркуляция океанов и атмосферы.
Вращение Земли - удивительный пример того, как грандиозные космические процессы становятся частью нашей повседневной жизни. Мы не замечаем этого движения благодаря его равномерности и постоянству, но именно оно создает условия, делающие нашу планету пригодной для жизни.
В Солнечной системе существует лишь два известных науке небесных тела, где можно наблюдать величественные горы с белоснежными вершинами. Первое, конечно, наша Земля. Но вторым, как ни удивительно, является далекий Плутон. Однако природа этих белых "шапок" кардинально отличается от земных аналогов.
Согласно исследованию, результаты которого были опубликованы в престижном научном журнале Nature Communications, вершины плутонианских гор покрыты не привычным нам снегом, а тончайшим слоем метанового инея. Это открытие стало очередным свидетельством уникальности геологических процессов, протекающих на этой далекой карликовой планете.
Ледяные исполины
Особенность гор Плутона заключается в их составе: они почти полностью состоят из водяного льда. На первый взгляд это может показаться невероятным – как могут существовать горы изо льда? Ответ кроется в экстремальных условиях этого небесного тела.
На Плутоне царят поистине космические холода: температура может опускаться до -233 градусов по Цельсию. При таких условиях происходят удивительные трансформации привычных нам веществ.
"Температура на Плутоне настолько низкая, что водяной лед становится твердым и прочным, как камень на Земле, — объясняет Танги Бертран, астроном из Исследовательского центра Эймса в Калифорнии. — Именно поэтому на этой карликовой планете могут существовать огромные горы из водяного льда".
Это удивительное открытие, сделанное благодаря историческому пролету космического аппарата NASA "Новые горизонты" мимо системы Плутона, стало настоящим прорывом в планетарной науке. Оно не только кардинально изменило наши представления о геологическом разнообразии в Солнечной системе, но и открыло новую главу в понимании того, как экстремальные условия могут создавать, казалось бы, невозможные ландшафты.
Существование гор из водяного льда на Плутоне заставляет ученых пересмотреть свои теории о том, какие геологические формации могут возникать на других планетах и их спутниках, где царят сверхнизкие температуры. Более того, это открытие намекает на возможность существования еще более экзотических ландшафтов в дальних уголках нашей космической окрестности.
При обсуждении научных открытий часто можно услышать фразу "это всего лишь теория", которой оппонент пытается обесценить научные знания. Но такое высказывание демонстрирует глубокое непонимание того, что в науке означает слово "теория".
В повседневной жизни слово "теория" используется для обозначения догадки, предположения или непроверенной идеи.
"У меня есть теория, почему соседская собака лает по ночам" — вот типичный пример бытового использования этого слова.
Однако в науке "теория" имеет совершенно другое значение. Научная теория — это тщательно проверенное, подтвержденное множеством доказательств объяснение определенного аспекта природы. Это не догадка, а результат многолетних исследований, экспериментов и наблюдений.
Путь от гипотезы к теории
В науке путь к теории начинается с гипотезы — обоснованного предположения, основанного на имеющихся знаниях и наблюдениях, которое можно проверить. Именно гипотеза — хотя она тоже опирается на научные данные — ближе к бытовому пониманию слова "теория".
Чтобы гипотеза превратилась в теорию, она должна:
Пройти многократную экспериментальную проверку;
Объяснять существующие наблюдения;
Иметь предсказательную силу — способность предвидеть результаты будущих экспериментов;
Выдержать критику научного сообщества;
Согласовываться с другими установленными научными знаниями.
Научные теории — это не просто абстрактные идеи. Они:
Опираются на обширную базу экспериментальных данных и наблюдений;
Проходят многоступенчатую проверку научным сообществом;
Постоянно подтверждаются новыми исследованиями;
Являются основой современных технологий и инноваций.
Например, без теории относительности Эйнштейна не работали бы GPS-навигаторы, а без квантовой теории у нас не было бы современных компьютеров и смартфонов.
14 июля 2015 года космический аппарат NASA "Новые горизонты" совершил то, что еще недавно казалось невозможным – он сфотографировал Плутон с расстояния всего 35 445 километров. Но реальность оказалась не такой яркой, как мы привыкли видеть в СМИ.
Тусклая реальность
Представьте: вы – астронавт на борту "Новых горизонтов". Вы подлетаете к бывшей девятой планете Солнечной системы и смотрите в иллюминатор. Что вы видите? Темный, едва различимый силуэт карликовой планеты. Никаких ярких красок, никакой сочной картинки. Просто тусклый мир в поясе Койпера, где солнечный свет в 1 600 раз слабее, чем на Земле.
Однако в СМИ и научных публикациях мы видим совсем другой Плутон – яркий, контрастный, с отчетливо видимыми деталями поверхности. В чем же причина такого расхождения?
Это не обман и не художественный вымысел. Ученые специально усиливают яркость и контрастность снимков, насыщают цвета. И делают это не ради красоты, а для науки. Причина проста: наши глаза эволюционировали для работы в земных условиях освещения. Когда исследователи изучают поверхность далеких миров, им необходимо различать каждую деталь – кратеры, разломы, возвышенности. На "реалистичных" темных снимках это сделать практически невозможно. Поэтому фотографии обрабатывают, делая их более информативными для научного анализа.
Не только Плутон
Эта практика касается не только снимков Плутона. NASA регулярно обрабатывает фотографии других планет (включая карликовые). Иногда это приводит к удивительным результатам: марсианское небо может казаться голубым, а атмосфера Юпитера – переливаться всеми цветами радуги. Но для каждого такого "художественного" снимка существует оригинал, показывающий, как все выглядит на самом деле.
В итоге мы оказываемся в интересной ситуации: чтобы лучше изучить реальность, ученым приходится ее "приукрашивать". Но благодаря этому мы не только получаем важные научные данные, но и можем увидеть два разных лица далеких миров – их реальный облик и их "научный портрет". И оба эти взгляда одинаково ценны: один показывает нам истинную картину космоса, другой помогает его понять.
Глядя на захватывающие дух изображения дальнего космоса, многим из нас трудно представить, что у Вселенной могут быть границы. Кажется естественным полагать, что космическое пространство простирается бесконечно во всех направлениях. Однако некоторые современные космологические модели рассматривают возможность того, что наша Вселенная — пусть и невообразимо огромная — все же может быть конечной.
Согласнотеории Большого взрыва, примерно 13,8 миллиарда лет назад наша Вселенная начала расширяться из сингулярного состояния, достигнув того, что мы можем лицезреть сегодня. Но что находится за пределами этого расширения? Есть ли у Вселенной границы?
Безграничная конечность
Представьте себе муравья, ползущего по поверхности апельсина. Для него эта поверхность конечна, так как она имеет определенную площадь, но при этом у нее нет границ. Муравей может бесконечно долго двигаться в одном направлении, каждый раз возвращаясь в исходную точку. Похожим образом может быть устроена и наша Вселенная — конечная, но без границ.
Современная наука предполагает несколько возможных форм Вселенной:
Сферическая Вселенная
Если Вселенная имеет форму сферы, то она конечна, но безгранична. Это означает, что, двигаясь в одном направлении, вы в конечном итоге вернетесь туда, откуда начали (пример с муравьем и апельсином).
Тороидальная Вселенная
Другой вариант — Вселенная в форме тора (бублика). В этом случае пространство также будет конечным, но без границ.
Согласно данным космологических наблюдений, Вселенная, скорее всего, плоская. Однако даже в этом случае она может быть конечной, но с особой топологией, как в старых видеоиграх, где, выходя за один край экрана, персонаж появляется с противоположной стороны.
В поисках формы Вселенной
Как же ученые пытаются определить истинную форму Вселенной? Главным инструментом в этих исследованиях служит реликтовое излучение – древнейшее электромагнитное излучение во Вселенной, возникшее примерно через 380 000 лет после Большого взрыва, когда пространство достаточно остыло, чтобы свет мог свободно распространяться. Изучая характеристики этого излучения, заполняющего все космическое пространство, ученые получают важнейшие данные о крупномасштабной структуре Вселенной и ее геометрических свойствах.
Не менее важную роль играет и наблюдение за галактиками и галактическими скоплениями. Анализируя их распределение в пространстве и характер движения, космологи составляют все более точную картину геометрии Вселенной. Современные наблюдения указывают на то, что наше пространство удивительно близко к плоскому. Однако это не исключает возможности его конечности (о чем сказано выше) — просто масштабы настолько велики, что любое искривление становится заметным только на колоссальных расстояниях.
Важный прорыв в исследовании структуры Вселенной произошел в 2015 году с первой регистрацией гравитационных волн – колебаний самой ткани пространства-времени. Эти волны, предсказанные Эйнштейном за 100 лет до их открытия, стали новым инструментом в руках ученых, позволяющим исследовать геометрию космоса на самых больших масштабах.
Между наукой и философией
Рассуждая о конечной Вселенной, мы неизбежно приходим к вопросу: что находится за ее пределами? Однако этот вопрос может оказаться таким же бессмысленным, как поиск точки севернее Северного полюса. Само понятие "за пределами" подразумевает наличие некоего внешнего пространства, в которое эти пределы можно было бы вместить. Но наша Вселенная, даже если она конечная, может быть всем и сразу, и никакого "снаружи" просто не существует.
Конечность Вселенной могла бы существенно повлиять на наше понимание фундаментальных законов природы. Например, в конечном пространстве количество материи и энергии тоже не может быть бесконечным, что важно для многих космологических моделей.
Сегодня вопрос о том, конечна ли наша Вселенная или бесконечна, остается одной из самых волнующих и глубоких загадок, стоящих перед космологией. Каждое новое наблюдение далеких галактик, каждый технологический прорыв приближают нас — пусть и на крошечный шаг — к пониманию истинной природы пространства, в котором разворачивается удивительная история человечества.
Возможно, путь к разгадке этой тайны будет долгим и полным неожиданных открытий. Но пока ученые неустанно трудятся над раскрытием секретов Вселенной, мы можем каждую ночь поднимать глаза к звездному небу, наполняя свою жизнь трепетом, восхищением и неутолимой жаждой познания. Ведь стремление понять мироздание делает нас теми, кто мы есть — мыслящими и вечно ищущими существами в необъятном океане космоса.
В созвездии Льва, на расстоянии около 124 световых лет от нас, находится удивительный мир, способный перевернуть наши представления о жизни во Вселенной. Речь идет об экзопланете K2-18 b, масса которой в 8,6 раза превышает массу нашей планеты.
K2-18 b вращается вокруг красного карлика K2-18 и относится к классу суперземель — планет, которые по массе превосходят Землю, но уступают газовым гигантам. Однако главный интерес вызывает не ее размер, а состав атмосферы. Наблюдения, проведенные в 2023 году с помощью космического телескопа NASA "Джеймс Уэбб", позволили выявить удивительные детали.
Планета окутана плотной водородно-гелиевой атмосферой, в которой были обнаружены следы метана, углекислого газа и водяного пара. Эти соединения сами по себе уже вызывают интерес, но настоящей сенсацией стало возможное обнаружение диметилсульфида (DMS) — соединения, которое на Земле производится исключительно живыми организмами, в частности некоторыми видами планктона. Это открытие заставило ученых задуматься: может ли K2-18 b быть обитаемой?
Диметилсульфид: ключ к разгадке жизни?
DMS — это органическое соединение, которое на Земле тесно связано с биологическими процессами. Его возможное присутствие в атмосфере K2-18 b пока не является однозначным доказательством обитаемости этой далекой экзопланеты, но делает ее одним из самых перспективных кандидатов для подробного изучения.
Ученые, разумеется, проявляют обоснованную осторожность в своих выводах. Дело в том, что теоретически DMS может образовываться и в результате небиологических (абиогенных) процессов, таких как бурная вулканическая активность или сложные — пока неизвестные науке — химические реакции в атмосфере. Более того, наблюдения за столь удаленным объектом сопряжены со значительными техническими сложностями, и даже самые навороченные телескопы могут давать неоднозначные результаты.
K2-18 b выделяется среди тысяч известных экзопланет своими уникальными характеристиками. Планета находится в "зоне обитаемости" своей звезды, где условия могут быть подходящими для существования жидкой воды. И действительно, данные указывают на возможность существования целого океана под плотной атмосферой, что делает K2-18 b представителем редкого класса планет — океанических миров. А возможное обнаружение DMS и других органических соединений делает K2-18 b одной из самых перспективных целей для поиска следов внеземной жизни.
Дальнейшие исследования K2-18 b с помощью "Джеймса Уэбба" и телескопов следующего поколения помогут ученым лучше понять состав ее атмосферы и изучить процессы, протекающие на поверхности. Если наличие DMS подтвердится, то это станет важным шагом в наших поисках жизни за пределами Земли. Но даже если K2-18 b окажется безжизненной, ее изучение поможет нам лучше понять, как формируются и эволюционируют планеты в других звездных системах.
В бескрайних просторах Вселенной, среди мириадов звезд и галактик, существуют загадки, которые ставят под сомнение наши представления о реальности.Одной из таких загадок является концепциясферы Дайсона– гипотетической мегаструктуры, окружающей звезду и способной полностью использовать ее энергию.
Идея сферы Дайсона была впервые предложена в 1960 году физикомФрименом Дайсоном, который задался вопросом: как могла бы выглядеть высокоразвитая инопланетная цивилизация, достигшая такого уровня технологического прогресса, что смогла бы полностью использовать энергию своей родной звезды? Ответ, который он предложил, был поистине грандиозным и захватывающим.
Фримен Дайсон
Представьте себе огромную сферическую конструкцию, окружающую звезду и собирающую всю ее энергию. Такая мегаструктура могла бы обеспечить практически неограниченные ресурсы для развития цивилизации, позволяя ей достичь невообразимых высот. Но возможно ли вообще создание подобного гигантского сооружения? Или это всего лишь плод фантазии ученых?
Визуализация сферы Дайсона
В этой статье мы погрузимся в мир альтернативной истории и попытаемся разобраться, насколько реалистична идея сферы Дайсона. Мы рассмотрим различные теории и гипотезы, связанные с этой концепцией, и проанализируем, какие технологии потребовались бы для ее воплощения в жизнь. Возможно, где-то во Вселенной уже существуют следы подобных мегаструктур, созданных инопланетными цивилизациями?
Присоединяйтесь к нам в этом захватывающем путешествии по граням реальности и неизведанного. Вместе мы попытаемся приоткрыть завесу тайны и узнать, что скрывается за идеей сферы Дайсона – величайшей инженерной задачи, когда-либо задуманной разумными существами. Готовы ли вы бросить вызов своим представлениям о возможном и невозможном?
Идея сферы Дайсона поистине захватывает воображение. Представьте себе гигантскую сферическую конструкцию, окружающую звезду и полностью использующую ее энергию.Такая мегаструктура могла бы обеспечить практически неограниченные ресурсы для развития цивилизации, позволяя ей достичь невероятных высот.
Но что именно представляет собой сфера Дайсона и как она может работать?
В своей первоначальной концепции Дайсон предположил, что высокоразвитая инопланетная цивилизация, нуждающаяся в огромных количествах энергии, могла бы построить сферическую оболочку вокруг своей родной звезды. Эта оболочка, состоящая из множества отдельных элементов, могла бы полностью поглощать излучение звезды и использовать его для своих нужд.
Представьте себе, что вся поверхность сферы Дайсона покрыта солнечными панелями или другими устройствами для сбора энергии.Вся энергия, излучаемая звездой, будет собираться и преобразовываться в электричество или другие формы энергии, необходимые для поддержания жизни и деятельности цивилизации.
Но это лишь одна из возможных концепций сферы Дайсона.Другие ученые предлагали альтернативные варианты, такие как сфера, состоящая из множества отдельных станций, вращающихся вокруг звезды на определенном расстоянии. Эти станции могли бы собирать энергию звезды и передавать ее друг другу, образуя своего рода "энергетическую сеть".
Или жетакие как "сфера Дайсона из облаков". В этой идее вместо сплошной оболочки используются миллиарды отдельных элементов, собирающих энергию звезды и передающих ее друг другу. Такая система может быть более гибкой и легче в реализации, но также имеет свои недостатки и сложности.
Независимо от конкретной реализации, идея сферы Дайсона поднимает множество вопросов и загадок. Какие технологии потребовались бы для ее создания? Сможет ли когда-нибудь человечество достичь такого уровня развития? И, самое главное, существуют ли где-то во Вселенной следы подобных мегаструктур, созданных инопланетными цивилизациями?
Ниже мы рассмотрим некоторые теории и гипотезы, связанные с возможностью создания сферы Дайсона, а также проанализируем, какие технологические достижения потребовались бы для ее воплощения в жизнь.
Несмотря на кажущуюся фантастичность идеи сферы Дайсона, ученые всерьез рассматривают возможность ее создания в далеком будущем. Для этого, однако, потребуются поистине гигантские технологические достижения и ресурсы.
Одна из ключевых проблем заключается в масштабах такого проекта. Для создания сферы Дайсона вокруг Солнца потребовалось бы огромное количество материалов –по некоторым оценкам, эквивалентное массе Юпитера или даже больше.Добыча и транспортировка такого объема ресурсов представляется крайне сложной задачей даже для высокоразвитой цивилизации.
Кроме того, необходимо решить вопрос о том, как удержать такую гигантскую конструкцию на орбите вокруг звезды. Одним из возможных решений может быть использование силы гравитации самой сферы для ее стабилизации. Однако это потребует невероятно точных расчетов и инженерных решений.
Несмотря на кажущуюся фантастичность идеи сферы Дайсона, ученые продолжают изучать возможности ее практической реализации.Одним из ключевых вопросов является выбор материалов и технологий для строительства подобной гигантской конструкции.
Традиционные строительные материалы, такие как сталь или бетон, не подходят для создания сферы Дайсона из-за их огромной массы и недостаточной прочности. Гораздо более перспективными являются прочные и легкие материалы на основе углерода, такие какуглеродные нанотрубкиилиаэрогели.
Углеродные нанотрубки обладают удивительной прочностью на разрыв, в сотни раз превышающей прочность стали при гораздо меньшей плотности. Кроме того, они могут эффективно проводить электрический ток, что позволит использовать их для передачи энергии по всей сфере.
Визуализация нанотрубки
Аэрогели – это уникальные пористые материалы с очень низкой плотностью и высокой изоляционной способностью. Они могут быть использованы для создания легких и прочных конструкций, защищающих от экстремальных температур и излучения.
Кирпич массой 2,5 кг стоит на куске аэрогеля массой 2,38 г
Для сборки столь масштабного сооружения потребуются принципиально новые технологии автоматизированного строительства в космосе. Одним из вариантов может стать использование огромных 3D-принтеров, работающих с расплавленными материалами или специальными строительными составами.
Другой подход– применениенанороботов, способных самостоятельно собирать конструкции из отдельных молекул и атомов. Такие наноразмерные роботы смогут создавать прочные и сверхлегкие структуры, недоступные для традиционных технологий.
Для питания нанороботов и других систем автоматизированного строительства может использоваться энергия самой звезды. Часть излучения светила будет собираться и преобразовываться в электрическую энергию для обеспечения работы строительных механизмов.
Конечно, реализация подобных грандиозных проектов потребует колоссальных ресурсов и усилий. Однако некоторые ученые считают, что при достаточном технологическом развитии создание сферы Дайсона вполне возможно в отдаленном будущем.
Несмотря на теоретическую привлекательность идеи сферы Дайсона, ее практическая реализация сталкивается с огромными, возможно, даже непреодолимыми трудностями применительно к нашему современному уровню знаний.Создание подобной гигантской инженерной конструкции требует колоссальных ресурсов и технологий, которые на данный момент даже трудно себе представить.
Рассмотрим уровень технологии нашей цивилизации на данный момент согласношкале Кардашева
Шкала цивилизаций Кардашева классифицирует цивилизации по их способности использовать и контролировать энергию. Вот объяснение различных типов цивилизаций по этой шкале:
Цивилизация 0 типа- это современная человеческая цивилизация, которая использует энергию, доступную на планете, такую как ископаемое топливо, гидроэлектроэнергию, ядерную энергию и возобновляемые источники энергии.
Цивилизация 1 типа- это цивилизация, способная использовать всю энергию, излучаемую их родной звездой. Это означает, что они могут собирать и использовать всю энергию, производимую звездой, что в миллионы раз превышает текущее энергопотребление человечества.
Цивилизация 2 типа- это цивилизация, которая может контролировать и использовать всю энергию своей родной галактики. Это потребляемая энергия на несколько порядков выше, чем у цивилизации 1 типа.
Для постройки сферы Дайсона - гигантской конструкции, окружающей звезду и улавливающей всю ее энергию - требуется цивилизация 1 типа.Сфера Дайсона является одним из способов использования всей энергии звезды, что является определяющей характеристикой цивилизации 1 типа по шкале Кардашова.
Таким образом, для создания сферы Дайсона необходимо достичь уровня цивилизации 1 типа, что означает полный контроль над энергетическими ресурсами родной звезды
Одной из главных проблем является масштаб проекта.Для того чтобы полностью окружить звезду типа Солнца, сфера Дайсона должна иметь радиус около 150 миллионов километров. Это означает, что для ее строительства потребуется невероятное количество материалов, исчисляемое массой целых планет.
Даже если использовать самые прочные и легкие материалы, известные науке,общая масса сферы будет астрономической. Доставка такого огромного количества ресурсов в космос с поверхности планеты представляется невыполнимой задачей.
Кроме того,сфера Дайсона должна выдерживать экстремальные условия открытого космоса:вакуум, перепады температур, интенсивное излучение звезды. Создание надежной защиты от этих факторов потребует применения передовых, возможно, пока даже не открытых технологий.
Еще одной серьезной, если не САМОЙ ГЛАВНОЙ проблемой, является стабилизация такой гигантской конструкции.
Сфера Дайсона должна сохранять свою форму и положение относительно звезды, несмотря на гравитационные возмущения и другие внешние воздействия. Решение этой задачи требует глубокого понимания законов физики и разработки принципиально новых инженерных решений.
Наконец, само строительство сферы Дайсона в космосе является беспрецедентной технологической задачей. Для ее выполнения потребуются полностью автоматизированные системы, способные работать в условиях открытого космоса без участия человека. Создание подобных самовоспроизводящихся роботизированных комплексов на сегодняшний день кажется фантастикой.
Таким образом, хотя концепция сферы Дайсона и привлекает воображение, ее воплощение в реальность в обозримом будущем представляется маловероятным. Для ее реализации человечеству потребуется достичь невиданного технологического и научного прогресса, преодолев множество фундаментальных ограничений. Возможно, более реалистичным вариантом будет создание менее масштабных инженерных сооружений в космосе, таких как орбитальные солнечные электростанции или поселения на других планетах.
Хотя создание полноценной сферы Дайсона на данный момент кажется фантастической идеей, ученые не исключают, что следы подобных мегаструктур могут быть обнаружены в космосе.Поиск признаков деятельности внеземных цивилизаций ведется уже несколько десятилетий в рамках проектаSETI (Search for Extraterrestrial Intelligence).
Одним из потенциальных признаков существования сферы Дайсона может бытьнеобычное инфракрасное излучение вокруг звезды. Поскольку сфера собирает большую часть энергии светила, она должна излучать огромное количество тепла в инфракрасном диапазоне. Такие аномалии могут быть зафиксированы современными телескопами.
Кроме того, ученые рассматривают возможность обнаружения индустриальных следов деятельности цивилизации, способной построить сферу Дайсона.Например, в окрестностях звезды могут присутствовать необычные химические элементы или соединения, характерные для промышленного производства.
Еще один возможный признак – наличие крупных инженерных сооружений вокруг звезды.
В 2015 году астрономы объявили об обнаружении необычной звездыKIC 8462852 (Звезда Табби), которая демонстрироваластранные колебания яркости. Одной из гипотез, объясняющих это явление, была деятельность внеземной цивилизации по строительству крупной мегаструктуры вокруг светила. Однако позже были выдвинуты и более правдоподобные естественные причины.
Тем не менее, поиск следов инопланетных мегаструктур продолжается с использованием все более совершенных телескопов и методов наблюдения.Обнаружение сферы Дайсона стало бы величайшим открытием в истории науки, доказательством существования внеземного разума.
Поиск признаков сферы Дайсона и других следов деятельности внеземных цивилизаций остается одной из самых интригующих и перспективных областей современной астрономии и астробиологии. Возможно, уже в ближайшие десятилетия человечество получит первые достоверные доказательства того, что мы не одиноки во Вселенной.
НашTelegram-канал. Еще больше тайн, паранормального и неизведанного.
В безжизненной атмосфереВенеры, окутанной ядовитыми облаками, ученые обнаружили следы газафосфина.Этот бесцветный яд может указывать на нечто поистине захватывающее - присутствие внеземной жизни на ближайшей к Земле планете.
В 2017-2019 годах международная группа астрономов, используя телескопы на Гавайях и в Чили, зафиксировала в атмосфере Венеры молекулы, поглощающие специфические диапазоны миллиметровых волн. Расчеты показали, что это фосфин в концентрации 20 частиц на миллиард. Данные об этом размещены в журналеNature Astronomy.
Но в агрессивной среде Венеры содержание такого количества фосфина невозможнобез постоянного его восполнения. В атмосферах твердых планет он быстро разрушается кислородом -на Венере его запасы иссякли бы за 16 минут.
Единственное логичное объяснение - деятельность микроорганизмов, подобных земным анаэробным бактериям, грибам и водорослям, для которых фосфин является продуктом жизнедеятельности.
Фосфин считается одним избиомаркеров- веществ, указывающих на возможность жизни.Хотя для подтверждения обитаемости планеты нужно обнаружить и другие маркеры вроде кислорода, метана или воды. Но находка фосфина уже наводит на смелые догадки.
Возможно, на высотах 50-70 км над адской поверхностью Венеры (460°C), в ее разреженной атмосфере без кислорода, обитают загадочные микробы-экстремофилы? Реликты тех времен, когда условия на планете были более пригодными для жизни?
Ученые пока осторожны в выводах. Фосфин мог образоваться и в результате редких вулканических извержений, молний или падения метеоритов. Или из-за неизвестных химических процессов.Но ни один из этих сценариев не объясняет стабильное присутствие газа в атмосфере.
Открытие следов фосфина в ядовитой атмосфере Венеры всколыхнуло научный мир.Этот газ может быть ключом к разгадке величайшей тайны - существует ли жизнь за пределами Земли?Но прежде чем дать окончательный ответ, ученым предстоит провести ряд беспрецедентных исследований на ближайшей к нам планете.
Видео Европейской южной обсерватории
Грядущие наблюдения обсерваторийSOFIA,James Webbимиссии DAVINCI+позволят уточнить концентрацию фосфина и его источник. А российская межпланетная станция "Венера-Д", проект запланирован на 2026-2031 годы, детально изучит атмосферу и поверхность планеты в поисках следов жизни.
Возможно, ключ к разгадке кроется на высотах 50-60 км, где условия наиболее благоприятны. Не исключено, что здесь в разреженной атмосфере при экстремальном давлении и температурах мы откроем жизнь за пределами нашей планеты.
Для исследования этого слоя атмосферы могут быть задействованы аэростатные зонды, подобные легендарным "Вега-1" и "Вега-2". А финансовую поддержку окажет фонд Breakthrough Initiatives известного мецената Юрия Мильнера.
Венера - рубеж в поисках инопланетной жизни в нашей Солнечной системе. Если даже в этом адском мире сохранились ее следы, то где еще в бескрайних просторах Вселенной может таиться разумная жизнь?
Ответ на этот вопрос мы получим не ранее второй половины 2020-х годов, когда данные новых миссий к Венере прольют свет на одну из величайших загадок мироздания. Но уже сейчас открытие фосфина вселяет надежду на то, что мы не одиноки во Вселенной.
НашTelegram-канал. Еще больше тайн, паранормального и неизведанного.
Все, что было рассказано в предыдущем посте, неосуществимо по энергетическим причинам, по крайней мере в рамках наших современных знаний о природе, а теперь посмотрим по каким причинам.
В графике замедления времени есть очень интересный факт - замедление времени и γ - фактор Лоренца равны, а еще, γ - фактор Лоренца показывает сколько энергии в виде антиматерии+материя со стопроцентным КПД нужно затратить на разгон ракеты.
И отсюда следует, чтобы получить 70 кратное замедление времени нам надо затратить 35кг антиматерии+35 кг материи для разгона 1 кг ракеты до субсветовой скорости. Печаль.
Посмотрим, что можно предпринять на практике если у нас будет антиматерия. Возьмем скорость звездолета в половину скорости света, а именно 150 000 км в сек и посмотрим сколько нам надо энергии для разгона 1кг корабля:
Для вычисления кинетической энергии объекта, движущегося с релятивистской скоростью (близкой к скорости света), мы должны использовать формулу из специальной теории относительности:
E = (γ - 1)mc²
где E - кинетическая энергия, m - масса объекта в покое, c - скорость света, и γ (гамма-фактор) выражается как:
сколько надо антивещества и вещества для аннигиляции, чтобы выделилось 14000 ТДж
Давайте рассчитаем, сколько материи и антиматерии нужно аннигилировать, чтобы получить 14000 ТДж энергии.
По формуле Эйнштейна, энергия, выделяемая при аннигиляции, связана с массой аннигилирующих частиц соотношением:
E = mc²
где E - выделившаяся энергия, m - суммарная масса аннигилировавших частиц, c - скорость света.
При аннигиляции массы m материи и массы m антиматерии суммарная масса аннигилировавших частиц будет 2m. Подставляя это в формулу, получаем:
E = 2mc²
Нам нужно найти m, зная E. Выразим m из этого уравнения:
m = E / (2c²)
Подставим известные значения:
E = 14000 ТДж = 1.4 × 10^16 Дж
c ≈ 3 × 10^8 м/с
m = (1.4 × 10^16) / (2 × (3 × 10^8)²) ≈ 0.0778 кг ≈ 77.8 г
Таким образом, для получения 14000 ТДж энергии путем аннигиляции нужно аннигилировать около 77.8 граммов материи и столько же антиматерии, то есть в сумме около 155.6 граммов.
Вариант путешествия на ракете весом 1000 тонн с 156 тоннами антиматерии выглядит уже интереснее, но вопрос в том - где взять столько антиматерии и как научиться преобразовывать ее в энергию разгона со 100% КПД?
Предположим, что мы отбросили идею с ракетой, и хотим просто отправить 1кг зонд-исследователь в разведку к ближайшим звездам. Допустим, что у нас есть метод подпитки зонда по лазерному лучу с Земли. И посчитаем, сколько надо электроэнергии для подпитки аппарата (14000 ТДж):
Сначала переведем 14000 ТДж в гигаватт-часы (ГВт⋅ч), так как электростанции обычно измеряют свою выработку в этих единицах.
1 ТДж = 10^12 Дж
1 ГВт⋅ч = 3.6 × 10^12 Дж
Таким образом, 14000 ТДж = 14000 × 10^12 Дж = 14000 / 3.6 ГВт⋅ч ≈ 3889 ГВт⋅ч.
Теперь рассмотрим электростанцию с 4 гигаваттными блоками. Если все блоки работают на полную мощность, то общая мощность электростанции составляет:
4 блока × 1 ГВт/блок = 4 ГВт
Теперь мы можем вычислить время, необходимое для выработки 14000 ТДж или 3889 ГВт⋅ч энергии:
Время = Энергия / Мощность
= 3889 ГВт⋅ч / 4 ГВт
≈ 972 часа
≈ 40.5 дней
Итак, электростанции с 4 гигаваттными блоками, работающими на полную мощность, потребуется около 972 часов или 40.5 дней, чтобы выработать 14000 ТДж энергии. Да еще надо затратить столько же энергии на торможение аппарат в точке прибытия аппарата. А это у нас, на секундочку, ЛАЭС в Сосновом Бору. И работать ей на один 1кг зонд 40 дней на разгон и 40 дней на торможение.
И, в заключение, рассмотрим еще один вариант - ядерную или термоядерную ракету. А вот здесь есть такой факт: в расчете на единицу массы аннигиляция материи и антиматерии является самым энергоемким процессом, превосходя деление урана примерно в 2000 раз, а термоядерный синтез - примерно в 500 раз, значит на разгон 1 кг до половины скорости света нам потребуется уже не 155.6 граммов антиматерии, а 77кг термоядерного топлива или 310кг урана. С инженерной точки зрения я не вижу вариантов сделать такую ракету.
Остается ограничиться разгоном до 0.1 скорости света, а вот тогда кинетическая энергия 1 кг ракеты, движущейся со скоростью 30000 км/с (10% скорости света), составляет около 4.5 × 10¹⁴ Дж или 450 ТДж. Соответственно, для получения 450 ТДж энергии путем термоядерного синтеза по реакции D-T потребуется около 0.53 кг дейтерия и 0.80 кг трития, в сумме около 1.33 кг термоядерного топлива. А урана потребуется 5.32 кг на разгон и 5.32 кг на торможение.
Все расчеты проводились при допущении 100% КПД. Вот такая у нас печальная мечта о звездах!
1. Помимо Луны, еще 6 астероидов сопровождают Землю, двигаясь по ее орбите вокруг Солнца. Один из них – Круинья, диаметром более 5 км, находится в 15 млн километров от Земли. Так что с некоторой натяжкой можно сказать, что у Земли 6 лун, а не одна.
2. Гравитационное поле Луны вызывает не только приливы и отливы, но и колебания земной коры, достаточно значительные для сеймологических приборов.
3. Каждую секунду Солнце становится легче на 4 миллиона тонн. Масса, равная земной, сгорает за 50000 лет. Однако, даже при такой расточительности, Солнце угаснет не менее чем через 5 млрд лет.
4. Вселенная насчитывает более 100 миллиардов галактик. На Земле невооруженным глазом видны лишь четыре: Млечный Путь, Туманность Андромеды, Большое и Малое Магеллановы Облака.
5. Отслужившие свой срок космические спутники отправляют на «кладбище» - специально выделенные для этой цели орбиты. По оценкам NASA, количество отработавших спутников превышает 8000.
6. Находящиеся на орбите космонавты никогда не храпят – в невесомости храп невозможен.
7. Все планеты Солнечной системы могли бы поместиться внутри Юпитера.
8. В 2036 году астероид Апофиз пройдет всего в 37000 км от Земли, и вероятность столкновения с ним рекордная – в 2004 году она была оценена астрофизиками приблизительно в 1%. Если Апофис все же врежется в нашу планету, то, при массе в 30 млн тонн и скорости 45000км/ч, он произведет взрыв мощностью не менее 1700 мегатонн. Для сравнения, мощность взрыва Тунгусского метеорита составила не более 15 мегатонн.
9. Лишь 4% Вселенной состоит из атомов. Остальные 96% составляет «темная материя» и «темная энергия», природа которых науке до сих пор неизвестна.
10. Из одиннадцати космических кораблей «Аполлон» (от «Аполлона -7» до «Аполлона-17»), аварию потерпел только один. Старт «Аполлона-13» к Луне произошел в 13:13 по местному времени. Через двое суток – 13 апреля 1970 года – во время полета произошла серьезная авария, в которой экипаж чудом остался в живых.
По тому ландшафту, который нам транслируют в фотоснимках с Марса автоматические межпланетные станции и марсоходы, можно сделать вывод, что на Марсе произошла глобальная катастрофа, погубившее все живое на этой планете. А жизнь там должна была быть, т.к. там было много воды - остались речные русла или это следы гигантских потопов иной природы. И сам пейзаж является последствиями водной эрозии.
Участок со следом водного потока длиной около 100 км.
Возможно, это и не реки, а сильно эродированные разломы. Либо потоки от… грязевых вулканов. Но об этом ниже.
Самый явный след от случившегося
гигантский разлом (каньон) долины Маринер
Длина каньона – 4500 км и глубина – до 11 км. Западнее от каньона расположены пять огромных вулканов (регион Тарсис) вместе с самым высоким – вулканом Олимп.
Три вулкана расположены в одну линию (как Гавайские острова на Земле): Гора Аскрийская (северная), гора Павлина и гора Арсия (южная). Высота их от 14 до 18 км. Северо-восточнее Олимпа расположен обширный (щитовой) вулкан Альба (высотой всего 1,5 км над плато, но в диаметре массы растекались до 1300 км). Магма так не растекается (высокая вязкость), возможно это грязевой вулкан и это растекались грязевые потоки. Сам конус не черный от базальта.
Высота же вулкана Олимп – 26 км. Всего на Марсе 20 вулканов. И пять из них огромные щитовые (с большим диаметром в основании).
Вулканы расположены в регионе Марса, названной провинциями Тарсис и Форсида, которые расположены выше остальной поверхности:
Карта высот этого полушария Марса. Видны следы каких-то потоков, которые когда-то стекали с территории провинции Тарсис. Не исключено, что эти горы, как сказал – грязевые вулканы. А плато Тарсис – отложения от грязевых выходов. Массы осаживались, а вода стекала ниже, происходил гигантский марсианский потоп.
Если планеты земной группы похожи по внутреннему строению, то тоже самое происходило и на Земле. Следов и вулканов предостаточно.
У основания вулкан Олимп имеет обрывистые склоны высотой до 7 км. Если он извергал лаву или грязевые потоки, то таких крутых склонов не оставил бы. Массы бы растеклись. Однозначного мнения у ученых нет на этот счет.
Но есть предположение, что вулкан омывал океан, вода подмыла его склоны и образовала эти крутые обрывы. Либо те потоки, которые стекали с провинции Тарсис, подмывали подножье Олимпа. А он в это время не извергался.
В 2020г. было опубликовано исследование, которое говорит, что следы водных потоков на Марсе проделаны потоками от грязевых вулканов. Это ли не подтверждение этой грязевой гипотезе. Только почему-то про Землю подумать так же ученые не хотят.
Но что стало причиной такого масштабного явления? Если посмотреть противоположное полушарие от плато с вулканами, то увидим огромную впадину:
Предположение, что сюда упал крупный объект. Возможно, кроме Фобоса и Деймоса на орбите находилась еще одна марсианская луна. При падении ударная волна прошла через всю толщу планеты и произвела разломы коры на противоположной стороне: образовалась долина Маринер и гигантские вулканы.
Сейчас масштабных вулканических процессов не наблюдается, вода на Марсе испарилась (вероятно из-за потери основного объема атмосферы). И вроде как планета не подает признаков жизни. Но некоторые факты говорят, что кое-какие процессы еще идут…
Существуют фотографии АМС, изучавшие поверхность Марса, где можно разглядеть шлейфы от марсианских вулканов. То ли это облака, то ли пепел от извержения.
Шлейф от вулкана Арсия, обнаруженный в 2018г. АМС Mars Express. Эти же образования станция фиксировала и в 2009, 2012 и 2015 годах. Предполагают, что это облака, т.к. они образуются перед марсианской зимой в этих широтах.
Облака – это водяной пар. Явно его источником является вулкан Арсия. Не исключено, что выходы горячих газов вызывают конденсацию водяного пара. Причем его объем очень большой, т.к. этот шлейф растягивается на тысячу километров. В 2020 году облака опять появились над вулканами:
По наблюдениям ученых облака появляются в одно и то же время примерно раз в 687 дней.
Для сравнения приведу как выглядит извержение вулкана на Земле, снятого из космоса:
Кроме пара, этот вулкан извергает и пепел, который похож на облака.
Кстати, вулкан Арсия интересен еще и тем, что в его склонах обнаружены пещеры:
Обрушение сводов одной из пещер. Аналогичные провалы встречаются и на Земле. И связаны они с выходами геотермальных вод. Давление масс из недр упало – образовались пещеры.
Следующий интересный факт, говорящий о том, что в недрах Марса еще протекают какие-то процессы и существует дегазация: в 2019 г. марсоход Curiosity зафиксировал рост концентрации кислорода.
П о объему атмосфера Марса состоит из 95% углекислого газа (CO2), 2,6% из азота (N2), 1,9% - аргон (Ar), а 0,16% и 0,06% кислород (O2) и угарный газ (CO) . Но за время работы марсоход в окрестностях кратера Гейла обнаружил значительные колебания содержания газов.
Газоа нализатор состава показал, что концентрация кислорода вырастает на 30% весной и сохраняется на этом уровне до марсианской осени, потом снижается, возвращается к первоначальным значениям. Тот же странный процесс происходит и с метаном - его обычная концентрация в кратере Гейла составляет 0,00000004% от общего объема, а в летние месяцы она резко возрастает на 60%.
Этот факт похож на то, что весной какая-то биологическая жизнь начинает производить кислород и метан, а осенью впадает в спячку из-за холода. Марсоход не может это проверить, т.к. на нем не установлены приборы для анализа и поиска органики.
Еще одно объяснение может состоять в том, что грунт оттаивает (освобождается от сковывающего его СО2 в виде льда) и из грунта начинают выходить газы, которые были в нем на момент существования на Марсе плотной атмосферы. Тем самым повышая их концентрацию над поверхностью.
Конечно же хочется верить в первую версию, что на Марсе осталась хоть какая-то форма жизни, пусть даже в бактериальной форме или в форме микроскопических водорослей, лишайников, способных выделять кислород. Если на Марсе вернется атмосфера, то возродится биосфера в какой-то части.
Понравилась статья? Тогда советую мой тг канал о космосе Космос рядом, весь движ там). А еще в нем скоро будет розыгрыш космических постеров)
«Столпы творения» - скопление межзвездного газа и пыли. Роддом для звёзд.
«Человек отличается от свиньи, в частности, тем, что ему иногда хочется поднять голову и посмотреть на звёзды» Виктор Амбарцумян
Сначала была краткая история времени, потом кратчайшая, потом сверхкратчайшая …потом эта статья. Здесь я собрал ссылки с видео по детским и не очень вопросам в области астрономии.
Блок 1. Откуда всё взялось?
Начнём с начала. Буквально. Время по текущей модели началось с Большого взрыва. Не было когда-то ни звезд, ни галактик, ни даже протонов. Горячевато было для этого. Однако Вселенная расширяется (мы знаем это по красному смещению) и постепенно кварк-глюонная плазма остыла до появления первых химических элементов (мы наблюдаем отголоски этой эпохи в виде реликтового излучения). И все заверте… И из них образовалось вообще всё. Хорошим вопросом здесь будет: что именно всё?
Берём этикетку вселенной и читаем состав. Выясняем, что привычное нам вещество вроде звёзд составляет всего 0,4%; ещё 3,6% - межгалактический газ (ну понятно, как и в пачке чипсов куча газа). Дальше начинается какая-то темная материя и темная энергия. Может, нам показалось? Да вроде бы нет. Мы же говорили, что Вселенная расширяется? Так вот, она делает это с ускорением (правда отдельный вопрос, с каким именно). А в ответе за это ускорение как раз темная энергия.
Кстати, на вопрос, куда расширяется Вселенная, есть ответ. На вопрос же, чем это закончится, есть пока только красивые гипотезы.
Блок 2. Биография звёзд (рождение, жизнь и смерть).
Звёзды живут поселениями по несколько сотен миллиардов - называемых галактиками. В центре каждой галактики находятся столица - сверхмассивная чёрная дыра. Некоторые из таких столиц, излучают огромную энергию и называются Квазарами. Квазары штуки полезные. С их помощью вы заказываете такси и пиццу (так как по ним калибруются системы глобального позиционирования). Галактики собираются в скопления по несколько сотен, они в свою очередь собираются в сверхскопления составляющие крупномасштабную структуру вселенной (представляющую собой иглу в яйце, которая в утке, которая в зайце).
Звезды рождаются под действием гравитации из межзвездного газа. Газ этот является в значительной части останками их предков. То есть они буквально возрождаются из обломков прошлых поколений звёзд.
Жизнь звёзд удивительно скучна. В том смысле, что в большинстве случаев сценарий их жизни определён и вписывается в главную последовательность. Зависит такой жизненный сценарий почти исключительно от их массы (как хорошо, что жизнь людей определяется чуть больше сложными параметрами). Живут звёзды по две-три штуки в звездной системе (реже по одной). Вокруг себя (точнее вокруг общего центра масс) крутят экзопланеты.
Сердцем каждой звезды является ректор по производству энергии. «Отходами» этого реактора являются элементы периодической таблицы до железа.
Иными словами в недрах любой звёзды происходит перманентный взрыв термоядерной бомбы, удерживаемый лишь силой гравитации. На балансе между двумя этими силами и живут звёзды. Однако запас топлива не вечен, в отличие от гравитации.
И если жизнь звёзд скучна и однообразна. То смерть их бывает очень яркой. Часть из них взрываются сверхновой. Тогда они светят какое-то время ярче целой галактики (ярче сотен миллиардов звёзд). В этот момент кстати рождаются недостающие элементы периодической таблицы.
Но даже более скоромные на первый взгляд звёзды могут быть нам интересны. Если они после смерти превращаются в белого карлика, при этом имея соседа, то иногда мы получаем сверхновую типа 1а. А это, ни много ни мало, позволяет нам определять расстояния до далеких галактик.
Блок 3. Ничем не примечательный желтый карлик и его окрестности
Одну звезду, появившуюся 4,5 млрд лет назад, человечество любит явно больше других. Выделяется эта звезда тем, что вокруг неё вращается планета на которой мы с вами живём. Земля, кстати, появилась почти одновременно с Солнцем. У нашей планеты всего один спутник - Луна. В этом плане мы конечно бедноваты. У Сатурна их 63. Но он газовый гигант, ему можно. Кстати про размеры, масштаб межпланетного расстояния не выдержан ни на одной картинке.
Мальчики и девочки интересующиеся звёздами и вселенной очень любят крутые игрушки. А что, вон у соседей, занимающихся элементарными частицами, какая классная штуковина.
Чего только нет у астрономов. Из машинок: роверы для игры в лунном реголите, марсоход Perseverance в комплекте с дроном для игры в кратере Езеро на марсе.
Но больше всего астрономы любят фото (правда не только в оптическом диапазоне, если так можно выразиться). Наземные телескопы это конечно классно, но атмосфера портит качество наблюдений. Что если поднять повыше? Вот вам телескоп летающий первым классом. Здорово, но атмосфера хоть и разрежена, а всё ж таки влияет. Тогда давайте уберём телескоп на орбиту. Вот и легендарный Хаббл. Круто, но хотелось бы заглянуть чуть дальше в галактическую историю. Почему бы не запустить на расстояние 1,5 млн километров штуку стоимостью 10 млрд долларов? Аккурат под Новый год запустили Джеймса Уэбба. Под ёлку не влез, извините, поэтому сразу в точку Лагранжа. Ну всё, теперь соседские ребята точно обзавидуются и начнут выпрашивать себе международный линейный коллайдер.
Ещё в тренде сейчас наборы игрушек, объединённые под названием многоканальная астрономия. Есть игрушки, которые пока не работают, вроде штуки для поиска темной материи.
Кстати, запускали мы игрушки и подальше чем Уэбба. Вот например Вояджеры. Только посмотрите куда они забрались. Мы накопили неплохой опыт по отправке аппаратов к другим планетам, а это не так просто как кажется на первый взгляд.
P.S.
Такой вот джентельменский набор знаний об астрономии и астрофизике. Конечно, есть ещё куча пограничных вопросов из других разделов физики. Но по ним есть другие плейлисты, а значит будут и другие дайджесты.
А чего не хватает в этом наборе? Гравитационного линзирования? Космического паруса? Предложите свои варианты, в идеале со ссылками на видео.
Ночью в Берлинской обсерватории была открыта новая планета солнечной системы. Открытие осуществили Иоганн Галле и его аспирант Генрих д’Арре на основе расчетов французского астронома Урбена Леверье. Наблюдение произведено телескопом (экваториальным ахроматическим рефрактором) фирмы Merz und Mahler. Это стало возможным благодаря тесному международному сотрудничеству в области астрономии, а так же в результате значительного усовершенствования технических средств наблюдения за небесными телами.
Но самое главное в данном событии - вера учёных. Вера в математику. Сенсация уже успела получить в прессе название «планета, открытая на кончике курсора». Название дал французский физик и астроном Доминик Франсуа Жан Араго, который вдохновил Леверье заняться этой тематикой. И такое название вовсе не случайно. Впервые астрономам удалось найти планету не исключительно с помощью методов наблюдения, а благодаря предварительным вычислениям.
В утреннем комментарии член Королевского Астрономического общества и Парижской академии наук Джордж Эйри отметил:
«Во всей истории астрономии и, даже я могу сказать, во всей истории науки не происходило ничего подобного… Уран, Церера, Паллада были открыты в ходе наблюдений, которые вовсе не предусматривали открытие планет… Но движение Урана, изученное учёными, которые находились целиком под впечатлением универсальности закона притяжения, указывало на действие некоторого возмущающего тела. Математики, наконец, решились приступить к работе, чтобы удостовериться в возможном существовании такого тела. Они показали, что предположение о возмущающем теле, движущемся по некоторой определённой орбите, полностью объясняет возмущение Урана. С твёрдостью, которую я должен характеризовать как замечательную, они выразили своё убеждение, что возмущающая планета должна находиться точно в некотором месте и иметь такой-то вид. Она действительно была найдена на этом месте и имела предсказанный вид. История астрономии не знает других подобных примеров».
К сожалению, открытию точно не удастся избежать споров о приоритете. Выяснилось, что на данный момент уже имеются другие независимо сделанные вычисления.
Так, математик Джон Адамс из Кембриджской обсерватории получил схожие с Леверье результаты. Адамс, как и Леверье основывался на работах Алексиса Бувара. Напомню, что Бувар ранее обнаружил отклонение траектории Урана от прогнозируемой.
Однако, в результате медлительной коммуникации с вышеупомянутым Джорджем Эйри из Королевской обсерватории в Гринвиче и директором Кембриджской обсерватории Джеймосом Чаллисом вычисления Адамса не привели к активным наблюдениям.
Непонятным остаётся, почему у двух научных групп столько времени заняло решение обратной проблемы (выведение математической модели из наблюдаемых данных), которая является элементарной для современных компьютеров. Видимо какие-то причины тому были. Но тем не менее открытие имеет огромное значение для науки.
Галле предложил назвать планету «Янус». Чэллис же предложил название «Океан». Леверье же хотел бы, чтобы планета была названа в его честь.
К сожалению, Иоганн Галле и большинство других исследователей, участвовавших в Проекте, более недоступны для комментариев.