Синестезия — нейрологическое явление, при котором стимуляция одного сенсорного пути автоматически вызывает ощущения или восприятие в другом сенсорном канале. Люди с хромо-музыкальной синестезией буквально "видят" музыку в виде цветных узоров, причем с удивительной последовательностью.
Исследования с МРТ показывают, что мозг синестетов физически отличается от мозга людей без синестезии — у синестетов на 23% больше нервных связей между областями, отвечающими за разные сенсорные функции. То, что большинство считает метафорой ("яркий звук", "сладкий голос"), они воспринимают буквально.
Интересно, что среди художников и музыкантов синестезия встречается в семь раз чаще. Скрябин, Римский-Корсаков, Кандинский и Набоков были синестетами, возможно, именно это нейрологическое "переплетение" чувств питало их творчество.
Квантовая биология изучает, как квантовые эффекты проявляются в биологических системах. Одним из наиболее изучаемых примеров является фотосинтез, где квантовая когерентность может играть роль в эффективном переносе энергии от солнечного света к хлорофиллу.
Исследования показывают, что растения могут использовать квантовые эффекты для почти 100%-ной эффективности передачи энергии, что значительно превосходит наши текущие технологии солнечных батарей.
Уникальность квантовой биологии в том, что она предлагает новый взгляд на биологические процессы, показывая, что квантовая механика не ограничивается микромиром, а может объяснять некоторые из самых фундаментальных процессов жизни, открывая путь для создания сверхэффективных технологий, вдохновленных природой.
Представьте себе космос, настолько далекий во времени, что даже самые долгоживущие звезды погасли. В этой невообразимо далекой перспективе мы сталкиваемся с понятием черных карликов - финальной стадии эволюции солнцеподобных звезд. Но что это за объекты, и почему мы никогда их не видели?
История черного карлика начинается задолго до его рождения. Когда звезды малой или средней массы, подобные нашему Солнцу, исчерпывают запас ядерного топлива, они переживают драматическую трансформацию. Эти светила значительно расширяются, превращаясь в красных гигантов и увеличивая свой диаметр в сотни раз. Затем эти звезды сбрасывают внешние оболочки, оставляя после себя плотное, раскаленное ядро - белый карлик.
Белые карлики - это уже не звезды в привычном понимании. Они не генерируют энергию путем ядерного синтеза. Вместо этого они медленно остывают, излучая накопленное тепло в космос. Этот процесс похож на то, как остывает уголек в потухшем костре, только растянутый на миллиарды лет.
Путь к черному карлику
Со временем белые карлики становятся все холоднее и тусклее. Астрономы предполагают, что в какой-то момент их температура сравняется с температурой реликтового излучения - космического микроволнового фона, заполняющего всю Вселенную. Когда это произойдет, белый карлик перестанет излучать видимый свет и превратится в черного карлика - невидимый холодный объект, дрейфующий в космической тьме.
Интересно, что ни один черный карлик еще не был обнаружен. Почему? Ответ кроется во времени. Процесс остывания белого карлика до состояния черного карлика занимает невообразимо долгий период - десятки миллиардов лет. Это больше, чем возраст самой Вселенной, которой "всего" 13,8 миллиарда лет!
На пороге трансформации
Хотя мы еще не видели черных карликов, астрономы наблюдали очень холодные белые карлики. Эти объекты, вероятно, находятся на последних (относительно, конечно) этапах своей эволюции, приближаясь к финальному превращению в черных карликов. Исследование таких объектов дает нам представление о том, как может выглядеть этот процесс.
Взгляд в далекое будущее
Изучение жизненного цикла звезд, от их зарождения до гипотетического превращения в черных карликов, расширяет наше понимание Вселенной. Этот процесс демонстрирует, что даже такие долгоживущие объекты, как звезды, подвержены фундаментальным изменениям. Наблюдая за эволюцией светил, мы получаем представление о масштабах времени, значительно превосходящих историю человечества, и о непрерывных трансформациях, происходящих в космосе.
На расстоянии около 5 200 световых лет от Земли раскинулась величественная туманность Розетка (NGC 2237) — одна из самых впечатляющих звездных "фабрик" нашей Галактики. Здесь, в огромном облаке газа и пыли диаметром 130 световых лет, рождаются настоящие звездные гиганты.
Изображение было получено 12 апреля 2010 года космической обсерваторией Европейского космического агентства (ESA) "Гершель", и на нем запечатлен один из самых активных регионов звездообразования в туманности Розетка.
Наиболее яркие области на снимке — это своеобразные "коконы" из газа и пыли, где развиваются массивные протозвезды. Каждый такой зародыш эволюционирует в звезду, которая будет как минимум в десять раз массивнее нашего Солнца. В верхней части изображения (отмечена на снимке ниже) видны небольшие светящиеся пятна — это звездные зародыши меньшей массы, находящиеся на раннем этапе развития.
Судьба таких космических гигантов предопределена их массой. В отличие от солнцеподобных звезд, живущих миллиарды лет, эти титаны проживут "всего" несколько миллионов лет. Объясняется это просто: чем массивнее звезда, тем быстрее она расходует свое термоядерное топливо. Когда оно закончится, каждая из этих звезд встретит свой конец в грандиозном взрыве сверхновой.
Однако гибель этих звезд станет началом нового цикла звездообразования. Вспышки сверхновых обогатят окружающее пространство тяжелыми элементами и создадут ударные волны, которые сожмут соседние облака газа и пыли, запуская формирование следующего поколения звезд. Так, в бесконечном танце созидания и разрушения, Вселенная поддерживает вечный круговорот звездной жизни.
Колесо Телеги (ESO 350-40) — одна из самых впечатляющих галактик в наблюдаемой Вселенной. Эта удивительная космическая структура, напоминающая гигантское колесо со спицами, находится в созвездии Скульптора на расстоянии около 500 миллионов световых лет от Земли.
Своими размерами она превосходит наш Млечный Путь почти в полтора раза — ее диаметр достигает колоссальных 150 000 световых лет.
История этой линзовидной галактики не менее захватывающая, чем ее внешний вид.
Изначально Колесо Телеги была обычной спиральной галактикой, но примерно 200-300 миллионов лет назад произошло драматическое событие — небольшая галактика-спутник буквально пронзила Колесо Телеги насквозь.
Это столкновение породило мощнейшую гравитационную ударную волну, которая прокатилась по всей галактике. Двигаясь на колоссальной скорости, волна сжимала газ и пыль, запуская процесс взрывного звездообразования вокруг центральной части.
В центре ESO 350-40 расположено яркое ядро, наполненное раскаленной космической пылью. Вокруг него сформировалось характерное кольцо, содержащее несколько миллиардов молодых звезд.
Сейчас астрономы наблюдают удивительный процесс — галактика постепенно возвращается к своей первоначальной форме; ее характерные "спицы колеса" начинают трансформироваться в рукава.
Детали этого космического великолепия удалось рассмотреть благодаря космическому телескопу NASA "Джеймс Уэбб". Цветное изображение было обнародовано 2 августа 2022 года.
Феномен "квантового ластика" бросает вызов нашему пониманию времени: частица "решает", быть волной или частицей, в зависимости от измерения, которое еще не произошло.
В эксперименте фотон проходит через двойную щель, создавая интерференционную картину (волновое поведение). Затем его квантово запутывают с другим фотоном. Удивительно, но если второй фотон измеряют определенным образом в будущем, первый фотон ретроактивно "меняет" свое поведение в прошлом.
Это не нарушает причинно-следственную связь, но показывает, что квантовая механика оперирует вне привычных рамок линейного времени. Как заметил физик Джон Уилер: "Никакое элементарное квантовое явление не является реальным, пока оно не наблюдается".
Быстрые радиовсплески (FRB) — загадочные импульсы радиоизлучения длительностью в миллисекунды, впервые обнаруженные в 2007 году. За долю секунды они выделяют энергию, сравнимую с той, что Солнце излучает за 80 лет.
В 2020 году астрономы впервые зафиксировали FRB внутри нашей Галактики — от магнитара SGR 1935+2154, расположенного на расстоянии около 30 000 световых лет от Земли. Это подтвердило гипотезу о связи радиовсплесков с нейтронными звездами.
Некоторые FRB повторяются с удивительной периодичностью. Источник FRB 121102 генерирует всплески по расписанию: 90 дней активности, затем 67 дней молчания. Причины такой цикличности остаются загадкой.
К 2025 году каталог CHIME зарегистрировал более 1 000 быстрых радиовсплесков. Их изучение может раскрыть природу темной материи и помочь картографировать крупномасштабную структуру Вселенной.
14 июля 2015 года космический аппарат NASA "Новые горизонты" получил самые детальные на сегодняшний день снимки Никты — одного из пяти известных спутников Плутона.
Недавно исторические фотографии были объединены и обработаны с помощью современных алгоритмов машинного обучения, что позволило получить довольно детальное цветное изображение (ниже) загадочного объекта.
Никта, открытая 15 мая 2005 года космическим телескопом NASA/ESA "Хаббл" одновременно со спутником Гидра, представляет собой необычное небесное тело неправильной формы размером примерно 50 × 33 × 31 километров. Свое название спутник получил в честь древнегреческой богини ночи Нюкты (Никты).
Долгое время считалось, что Никта, как и другие малые спутники Плутона, образовалась из обломков, выброшенных при столкновении Плутона с крупным объектом пояса Койпера. Однако эта гипотеза не может объяснить удивительно высокую отражательную способность спутника. Современные исследования предполагают, что Никта сформировалась независимо от Плутона из первичного облака ледяных частиц — остатков материала, из которого формировалась Солнечная система. А уже после объект бы "похищен" Плутоном и превращен в его естественный спутник.
Поверхность Никты покрыта крупнозернистым водяным льдом, температура которого не поднимается выше -230°C. При таком экстремальном холоде лед приобретает прочность, сравнимую с земными горными породами.
Особый интерес ученых вызывает крупное темное пятно на поверхности спутника — след древнего столкновения с другим космическим телом. Красновато-коричневый материал в этой области мог принадлежать объекту-импактору или был выброшен из недр самой Никты.
В настоящее время NASA и Юго-западный исследовательский институт рассматривают возможность организации новой миссии к системе Плутона для детального изучения карликовой планеты и ее загадочных спутников. Это может помочь раскрыть тайны формирования и эволюции объектов как окраинах Солнечной системы, так и в ее внутренней области.
Галактика NGC 1277 в созвездии Персея, удаленная примерно на 238 миллионов световых лет от Земли, пребывает в "спящем" состоянии уже 10 миллиардов лет — почти с момента своего формирования.
В этой так называемой "реликтовой" галактике процессы звездообразования прекратились в рекордно ранние сроки, что делает ее уникальной космической "окаменелостью".
При массе в 1,2 триллиона солнечных, эта компактная линзовидная галактика содержит преимущественно старые красные звезды. Ее необычная эволюция связана с расположением в богатом галактическом скоплении Персея, где гравитационные взаимодействия с соседями быстро лишили ее холодного газа, необходимого для формирования новых звезд.
Изучение таких "замороженных во времени" галактик позволяет астрономам заглянуть в раннюю Вселенную без необходимости наблюдать крайне далекие объекты. Исследование NGC 1277 дает нам представление об условиях, существовавших вскоре после Большого взрыва.
Биолюминесцентный планктон, в частности динофлагелляты вида Ночесветка (лат. Noctiluca scintillans), создает одно из самых впечатляющих природных световых шоу на планете, заставляя океанские волны светиться голубым цветом ночью.
Это свечение – не просто красивое зрелище, а сложный защитный механизм. Когда хищник пытается съесть планктон, вспышка света привлекает более крупных хищников, которые могут атаковать первоначального агрессора.
Люминесценция производится благодаря химической реакции между белком люциферином и ферментом люциферазой в присутствии кислорода. При механическом воздействии ионы кальция запускают эту реакцию, что объясняет, почему планктон светится при движении волн или проплывающей лодки.
Интенсивность свечения служит индикатором здоровья морской экосистемы. Исследования показывают, что чрезмерное использование удобрений и изменение климата влияют на численность и биолюминесцентные способности планктона, делая это явление своеобразным биоиндикатором состояния океана.
Любопытнейшее исследование, опубликованное в рецензируемых научных журналах Nature Astronomy и The Astrophysical Journal Letters, предполагает, что миллиарды лет назад нашу Солнечную систему посетила звезда-странница.
Это древнее событие могло кардинально изменить облик нашей космической окрестности, превратив ее в то, что мы наблюдаем сегодня.
Согласно расчетам, безымянная звезда, немного уступающая Солнцу по массе и размеру, прошла на расстоянии около 110 астрономических единиц (а.е.*) от нашего светила. Для сравнения: среднее расстояние между Солнцем и Плутоном составляет "всего" 39,5 а.е.
*Одна а.е. равна среднему расстоянию между Землей и Солнцем и составляет примерно 150 миллионов километров.
Гравитационное воздействие этой незваной космической гостьи могло серьезно повлиять на расположение и орбиты многих объектов в ранней Солнечной системе.
"Это сближение было настолько тесным, что оно могло повлиять на судьбы целых миров", — говорит Сюзанна Пфальцнер, ведущий автор исследования и астрофизик из немецкого Исследовательского центра Юлиха (FZJ).
Рождение гипотезы
Гипотеза о "свидании" наше планетной системы с солнцеподобной звездой появилась в процессе изучения необычных траекторий объектов, расположенных далеко за орбитой Нептуна. Их орбиты наклонены и сильно вытянуты, что трудно связать с естественными эволюционными процессами Солнечной системы.
"Эти объекты могут быть свидетелями давно минувшего преступления", — поясняет астрофизик Амит Говинд, соавтор исследования.
Для проверки своей гипотезы ученые прибегли к компьютерному моделированию, проведя серию из более чем 3 000 симуляций. Результаты оказались поразительными.
Модель с участием звезды-странницы, посетившей Солнечную систему на заре ее существования, не только объяснила странные орбиты транснептуновых объектов, но и пролила свет на загадку карликовой планеты Седны. Этот далекий ледяной мир движется по крайне вытянутой орбите, удаляясь от нашего светила более чем на 937 а.е.!
Более того, гравитационное влияние звезды-странницы могло способствовать появлению необычных спутников у планет-гигантов. По словам Симона Портегиса Цварта, одного из авторов исследования, некоторые транснептуновые объекты могли быть перемещены во внутренние области Солнечной системы, где их захватили гравитационные поля крупных планет. Например, Феба — самый массивный из нерегулярных удаленных спутников Сатурна — скорее всего, был сформирован где-то за орбитой Нептуна.
"Космос хранит свои секреты, но он также оставляет подсказки, — заключает Пфальцнер. — Подобно археологам, мы по крупицам собираем свидетельства давно минувших космических событий, и каждая необычная орбита может быть ключом к разгадке тайн прошлого".
Взаимодействующие галактики VV340A и VV340B, расположенные на расстоянии около 450 миллионов световых лет от нас, вместе образуют объект, известный как "Галактический восклицательный знак".
Эти спиральные красавицы, сталкиваясь, создают космическое зрелище, которое со временем приведет к их полному слиянию и появлению эллиптической галактики.
В 2018 году астрономы, используя сеть радиотелескопов Very Large Array (VLA), обнаружили SIMP J01365663+0933473 — одинокий объект в 20 световых годах от Земли, который бросил вызов существующим классификациям.
С массой в 12,7 раза больше массы Юпитера, объект занимает промежуточное положение между самыми массивными планетами и наименее массивными звездами. SIMP J01365663+0933473 балансирует на границе, где заканчиваются планеты и начинаются коричневые карлики.
Но самое удивительное — его магнитное поле. Оно в 200 раз мощнее юпитерианского и генерирует полярные сияния, видимые только в радиодиапазоне.
Температура атмосферы SIMP J01365663+0933473 достигает 825 градусов Цельсия, хотя у объекта нет родительской звезды для нагрева. Этот странник обеспечивает себя теплом самостоятельно, вырабатывая его за счет остаточной энергии формирования. А его мощные ураганы создают переменную облачность из силикатов и металлов, меняющую яркость объекта на 8% каждые 2,5 часа.
Это гигантское облако из раскаленного газа и пыли, сияющее яркими оттенками розового, красного и пурпурного благодаря молодым массивным звездам, которые рождаются в ее сердце. Со средним диаметром около 110 световых лет, Лагуна представляет собой одну из крупнейших областей активного звездообразования в нашей Галактике.
Ее яркость обусловлена ионизацией водорода ультрафиолетовым излучением со стороны массивных светил спектрального класса O, особенно двойной звезды 9 Стрельца (9 Sagittarii). Темные пылевые полосы, пересекающие туманность, добавляют контраста, создавая захватывающий вид.
Впервые обнаруженная итальянским астрономом Джованни Баттистой Годиерной в 1654 году и каталогизированная французским астрономом Шарлем Мессье в 1764 году, M 8 остается одной из самых фотогеничных туманностей, доступных для наблюдения даже в бинокль в ясные летние ночи.
Изучение Лагуны помогает астрономам лучше понять, как формируются звезды и эволюционируют галактики, включая наш Млечный Путь.
Квазары — самые яркие объекты во Вселенной, испускающие в миллионы раз больше энергии, чем целые галактики при размере не больше Солнечной системы. Их невероятная светимость порождается сверхмассивными черными дырами массой в миллиарды солнечных масс.
Когда огромные объемы газа и пыли падают в черную дыру, они формируют раскаленный аккреционный диск, разогревающийся до миллионов градусов. Интенсивное электромагнитное излучение и релятивистские струи вещества (джеты), вырывающиеся перпендикулярно диску, создают характерную сигнатуру квазаров.
Квазары были гораздо более распространены в ранней Вселенной, примерно 10-12 миллиардов лет назад, что делает их важными маркерами космической эволюции. Сегодня мы наблюдаем их в очень далеких галактиках, причем свет от некоторых квазаров начал свой путь, когда Вселенной было всего 700 миллионов лет — это помогает астрономам изучать самые ранние периоды формирования космических структур.
Белые карлики, ядра которых кристаллизуются в гигантские алмазы, долгое время считались лишь умозрительной гипотезой, но теперь их существование доказано.
Эти удивительные объекты — остатки звезд, подобных Солнцу, — формируются, когда белый карлик охлаждается в течение миллиардов лет. Под огромным давлением углерод в ядре кристаллизуется, превращаясь в структуру, напоминающую алмаз, диаметром до 10 000 километров — чуть меньше диаметра Земли.
В 2004 году астрономы изучили белый карлик BPM 37093, неофициально прозванный "Люси" в честь песни The Beatles "Lucy in the Sky with Diamonds". С помощью астросейсмологии они выяснили, что около 90% его массы кристаллизовалось, образуя "алмаз" массой около 10^31 килограммов, что эквивалентно 1,5 миллиона масс Земли.
Этот космический алмаз не только поражает воображение, но и влияет на эволюцию звезды: кристаллизация высвобождает скрытую тепловую энергию, замедляя охлаждение белого карлика на миллиарды лет.
Представьте планету, которая примерно на четверть больше Юпитера, но при этом находится так же близко к своей звезде, как Меркурий к Солнцу. А теперь добавьте невероятную деталь — эта планета поглощает 99% падающего на нее света, что делает ее чернее любого известного природного материала на Земле.
Экзопланета TrES-2b, находящаяся на расстоянии около 750 световых лет от Земли, стала настоящей диковинкой для астрономов. Этот мир, классифицируемый как "горячий юпитер", примерно в 1,2 раза массивнее Юпитера. При этом экзопланета поглощает свет эффективнее, чем уголь (поглощает 96% света) или даже свежий асфальт (поглощает 97% света).
Причина такой необычной черноты кроется в экстремальных условиях на планете:
Средняя температура составляет 1 600 градусов, что переводит некоторые нетипичные компоненты атмосферы (натрий и калий) в газообразное состояние.
В атмосфере присутствуют испаренные натрий и калий, а также оксид титана, создающие уникальную химическую среду.
При такой высокой температуре эти вещества взаимодействуют особым образом, что приводит к исключительному поглощению света.
Кроме того, в атмосфере TrES-2b, скорее всего, отсутствуют отражающие облака, подобные тем, что делают Юпитер таким ярким, несмотря на его удаленность от Солнца.
Экзопланета TrES-2b была открыта 21 августа 2006 года транзитным методом* с помощью наземного телескопа TrES, но ее уникальные свойства были выявлены позже благодаря совместным наблюдениям нескольких инструментов. Космический телескоп NASA "Кеплер" измерил невероятно низкое альбедо (отражательная способность) планеты, а телескоп NASA "Спитцер" помог исследовать ее тепловое излучение, подтвердив экстремальные условия, царящие в атмосфере. На полный оборот вокруг родительской звезды, представленной красным карликом, TrES-2b нужно менее чем 2,5 земных дня. Для сравнения, Меркурий совершает оборот вокруг Солнца за 88 земных дней.
*Метод транзита — один из основных способов обнаружения экзопланет, который заключается в наблюдении за уменьшением яркости звезды, когда перед ней проходит планета.
Эта загадочная экзопланета не просто расширила наши представления о возможных свойствах небесных тел — она показала, что даже базовые характеристики планет, такие как отражательная способность, могут выходить за пределы всего, что мы знали ранее. В то время как Земля отражает около 30% падающего на нее солнечного света, а Луна — 12%, существование планеты, поглощающей 99% излучения, заставляет задуматься: какие еще удивительные объекты скрываются в глубинах Вселенной, терпеливо дожидаясь своего момента открытия?
Экзолуны — спутники экзопланет — могут быть более пригодными для жизни, чем сами планеты. Исследователи из Гарвард-Смитсоновского центра астрофизики смоделировали условия на потенциальных спутниках газовых гигантов в обитаемых зонах звезд.
Гравитационное взаимодействие с планетой-хозяином может создавать приливное нагревание, обеспечивающее экзолуну дополнительным источником энергии. Это позволяет таким спутникам иметь жидкую воду даже вдали от звезды.
Космический телескоп NASA "Джеймс Уэбб" продолжает поиск экзолун вокруг уже обнаруженных экзопланет. Первым кандидатом считается Kepler-1708 b-i — объект в 2-3 раза больше Земли, обращающийся вокруг планеты-гиганта.
Гиперновые — чрезвычайно мощные звездные взрывы, выделяющие в 10–100 раз больше энергии, чем обычные сверхновые. В момент такого катаклизма их светимость может кратковременно превышать суммарную светимость звезд типичной галактики.
Гиперновые возникают при коллапсе массивных звезд с быстрым вращением. Часть звездной материи выбрасывается со скоростью до 30% от скорости света, а остаток коллапсирует, чаще всего образуя черную дыру.
Именно с гиперновыми связывают наблюдаемые гамма-всплески — самые яркие электромагнитные события во Вселенной. Исследователи подсчитали, что если бы гиперновая взорвалась на расстоянии до 1 000 световых лет от Земли, ее излучение разрушило бы озоновый слой, вызвав массовое вымирание.
К счастью, ближайшие потенциальные кандидаты на гиперновые находятся на безопасном расстоянии в десятки тысяч световых лет от Солнечной системы.
Вопреки распространенному мнению, "темная сторона" Луны получает столько же солнечного света, сколько и видимая с Земли сторона. Правильнее называть ее "обратной" стороной, поскольку она всегда обращена от Земли из-за синхронного вращения Луны.
Первые снимки обратной стороны Луны были получены советской автоматической станцией "Луна-3" в 1959 году. Ученых поразило фундаментальное различие между полушариями: обратная сторона имеет гораздо больше кратеров и почти лишена темных "морей", характерных для видимой стороны.
Это асимметричное распределение объясняется разной толщиной лунной коры — на обратной стороне она примерно в два раза толще, что препятствовало излиянию древних лавовых потоков, формировавших лунные моря.